Cargando…

Simultaneous Indoor Pedestrian Localization and House Mapping Based on Inertial Measurement Unit and Bluetooth Low-Energy Beacon Data

Indoor location estimation is crucial to provide context-based assistance in home environments. In this study, a method for simultaneous indoor pedestrian localization and house mapping is proposed and evaluated. The method fuses a person’s movement data from an Inertial Measurement Unit (IMU) with...

Descripción completa

Detalles Bibliográficos
Autores principales: Ceron, Jesus D., Kluge, Felix, Küderle, Arne, Eskofier, Bjoern M., López, Diego M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7506668/
https://www.ncbi.nlm.nih.gov/pubmed/32842566
http://dx.doi.org/10.3390/s20174742
Descripción
Sumario:Indoor location estimation is crucial to provide context-based assistance in home environments. In this study, a method for simultaneous indoor pedestrian localization and house mapping is proposed and evaluated. The method fuses a person’s movement data from an Inertial Measurement Unit (IMU) with proximity and activity-related data from Bluetooth Low-Energy (BLE) beacons deployed in the indoor environment. The person’s and beacons’ localization is performed simultaneously using a combination of particle and Kalman Filters. We evaluated the method using data from eight participants who performed different activities in an indoor environment. As a result, the average participant’s localization error was 1.05 ± 0.44 m, and the average beacons’ localization error was 0.82 ± 0.24 m. The proposed method is able to construct a map of the indoor environment by localizing the BLE beacons and simultaneously locating the person. The results obtained demonstrate that the proposed method could point to a promising roadmap towards the development of simultaneous localization and home mapping system based only on one IMU and a few BLE beacons. To the best of our knowledge, this is the first method that includes the beacons’ data movement as activity-related events in a method for pedestrian Simultaneous Localization and Mapping (SLAM).