Cargando…
Fully-Actuated Aerial Manipulator for Infrastructure Contact Inspection: Design, Modeling, Localization, and Control
This paper presents the design, modeling and control of a fully actuated aerial robot for infrastructure contact inspection as well as its localization system. Health assessment of transport infrastructure involves measurements with sensors in contact with the bridge and tunnel surfaces and the inst...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7506669/ https://www.ncbi.nlm.nih.gov/pubmed/32825381 http://dx.doi.org/10.3390/s20174708 |
_version_ | 1783585066885054464 |
---|---|
author | Sanchez-Cuevas, Pedro J. Gonzalez-Morgado, Antonio Cortes, Nicolas Gayango, Diego B. Jimenez-Cano, Antonio E. Ollero, Aníbal Heredia, Guillermo |
author_facet | Sanchez-Cuevas, Pedro J. Gonzalez-Morgado, Antonio Cortes, Nicolas Gayango, Diego B. Jimenez-Cano, Antonio E. Ollero, Aníbal Heredia, Guillermo |
author_sort | Sanchez-Cuevas, Pedro J. |
collection | PubMed |
description | This paper presents the design, modeling and control of a fully actuated aerial robot for infrastructure contact inspection as well as its localization system. Health assessment of transport infrastructure involves measurements with sensors in contact with the bridge and tunnel surfaces and the installation of monitoring sensing devices at specific points. The design of the aerial robot presented in the paper includes a 3DoF lightweight arm with a sensorized passive joint which can measure the contact force to regulate the force applied with the sensor on the structure. The aerial platform has been designed with tilted propellers to be fully actuated, achieving independent attitude and position control. It also mounts a “docking gear” to establish full contact with the infrastructure during the inspection, minimizing the measurement errors derived from the motion of the aerial platform and allowing full contact with the surface regardless of its condition (smooth, rough, ...). The localization system of the aerial robot uses multi-sensor fusion of the measurements of a topographic laser sensor on the ground and a tracking camera and inertial sensors on-board the aerial robot, to be able to fly under the bridge deck or close to the bridge pillars where GNSS satellite signals are not available. The paper also presents the modeling and control of the aerial robot. Validation experiments of the localization system and the control system, and with the aerial robot inspecting a real bridge are also included. |
format | Online Article Text |
id | pubmed-7506669 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-75066692020-09-26 Fully-Actuated Aerial Manipulator for Infrastructure Contact Inspection: Design, Modeling, Localization, and Control Sanchez-Cuevas, Pedro J. Gonzalez-Morgado, Antonio Cortes, Nicolas Gayango, Diego B. Jimenez-Cano, Antonio E. Ollero, Aníbal Heredia, Guillermo Sensors (Basel) Article This paper presents the design, modeling and control of a fully actuated aerial robot for infrastructure contact inspection as well as its localization system. Health assessment of transport infrastructure involves measurements with sensors in contact with the bridge and tunnel surfaces and the installation of monitoring sensing devices at specific points. The design of the aerial robot presented in the paper includes a 3DoF lightweight arm with a sensorized passive joint which can measure the contact force to regulate the force applied with the sensor on the structure. The aerial platform has been designed with tilted propellers to be fully actuated, achieving independent attitude and position control. It also mounts a “docking gear” to establish full contact with the infrastructure during the inspection, minimizing the measurement errors derived from the motion of the aerial platform and allowing full contact with the surface regardless of its condition (smooth, rough, ...). The localization system of the aerial robot uses multi-sensor fusion of the measurements of a topographic laser sensor on the ground and a tracking camera and inertial sensors on-board the aerial robot, to be able to fly under the bridge deck or close to the bridge pillars where GNSS satellite signals are not available. The paper also presents the modeling and control of the aerial robot. Validation experiments of the localization system and the control system, and with the aerial robot inspecting a real bridge are also included. MDPI 2020-08-20 /pmc/articles/PMC7506669/ /pubmed/32825381 http://dx.doi.org/10.3390/s20174708 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Sanchez-Cuevas, Pedro J. Gonzalez-Morgado, Antonio Cortes, Nicolas Gayango, Diego B. Jimenez-Cano, Antonio E. Ollero, Aníbal Heredia, Guillermo Fully-Actuated Aerial Manipulator for Infrastructure Contact Inspection: Design, Modeling, Localization, and Control |
title | Fully-Actuated Aerial Manipulator for Infrastructure Contact Inspection: Design, Modeling, Localization, and Control |
title_full | Fully-Actuated Aerial Manipulator for Infrastructure Contact Inspection: Design, Modeling, Localization, and Control |
title_fullStr | Fully-Actuated Aerial Manipulator for Infrastructure Contact Inspection: Design, Modeling, Localization, and Control |
title_full_unstemmed | Fully-Actuated Aerial Manipulator for Infrastructure Contact Inspection: Design, Modeling, Localization, and Control |
title_short | Fully-Actuated Aerial Manipulator for Infrastructure Contact Inspection: Design, Modeling, Localization, and Control |
title_sort | fully-actuated aerial manipulator for infrastructure contact inspection: design, modeling, localization, and control |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7506669/ https://www.ncbi.nlm.nih.gov/pubmed/32825381 http://dx.doi.org/10.3390/s20174708 |
work_keys_str_mv | AT sanchezcuevaspedroj fullyactuatedaerialmanipulatorforinfrastructurecontactinspectiondesignmodelinglocalizationandcontrol AT gonzalezmorgadoantonio fullyactuatedaerialmanipulatorforinfrastructurecontactinspectiondesignmodelinglocalizationandcontrol AT cortesnicolas fullyactuatedaerialmanipulatorforinfrastructurecontactinspectiondesignmodelinglocalizationandcontrol AT gayangodiegob fullyactuatedaerialmanipulatorforinfrastructurecontactinspectiondesignmodelinglocalizationandcontrol AT jimenezcanoantonioe fullyactuatedaerialmanipulatorforinfrastructurecontactinspectiondesignmodelinglocalizationandcontrol AT olleroanibal fullyactuatedaerialmanipulatorforinfrastructurecontactinspectiondesignmodelinglocalizationandcontrol AT herediaguillermo fullyactuatedaerialmanipulatorforinfrastructurecontactinspectiondesignmodelinglocalizationandcontrol |