Cargando…
Maintaining Myocardial Glucose Utilization in Diabetic Cardiomyopathy Accelerates Mitochondrial Dysfunction
Cardiac glucose uptake and oxidation are reduced in diabetes despite hyperglycemia. Mitochondrial dysfunction contributes to heart failure in diabetes. It is unclear whether these changes are adaptive or maladaptive. To directly evaluate the relationship between glucose delivery and mitochondrial dy...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Diabetes Association
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7506832/ https://www.ncbi.nlm.nih.gov/pubmed/32366681 http://dx.doi.org/10.2337/db19-1057 |
_version_ | 1783585104105308160 |
---|---|
author | Wende, Adam R. Schell, John C. Ha, Chae-Myeong Pepin, Mark E. Khalimonchuk, Oleh Schwertz, Hansjörg Pereira, Renata O. Brahma, Manoja K. Tuinei, Joseph Contreras-Ferrat, Ariel Wang, Li Andrizzi, Chase A. Olsen, Curtis D. Bradley, Wayne E. Dell’Italia, Louis J. Dillmann, Wolfgang H. Litwin, Sheldon E. Abel, E. Dale |
author_facet | Wende, Adam R. Schell, John C. Ha, Chae-Myeong Pepin, Mark E. Khalimonchuk, Oleh Schwertz, Hansjörg Pereira, Renata O. Brahma, Manoja K. Tuinei, Joseph Contreras-Ferrat, Ariel Wang, Li Andrizzi, Chase A. Olsen, Curtis D. Bradley, Wayne E. Dell’Italia, Louis J. Dillmann, Wolfgang H. Litwin, Sheldon E. Abel, E. Dale |
author_sort | Wende, Adam R. |
collection | PubMed |
description | Cardiac glucose uptake and oxidation are reduced in diabetes despite hyperglycemia. Mitochondrial dysfunction contributes to heart failure in diabetes. It is unclear whether these changes are adaptive or maladaptive. To directly evaluate the relationship between glucose delivery and mitochondrial dysfunction in diabetic cardiomyopathy, we generated transgenic mice with inducible cardiomyocyte-specific expression of the GLUT4. We examined mice rendered hyperglycemic following low-dose streptozotocin prior to increasing cardiomyocyte glucose uptake by transgene induction. Enhanced myocardial glucose in nondiabetic mice decreased mitochondrial ATP generation and was associated with echocardiographic evidence of diastolic dysfunction. Increasing myocardial glucose delivery after short-term diabetes onset exacerbated mitochondrial oxidative dysfunction. Transcriptomic analysis revealed that the largest changes, driven by glucose and diabetes, were in genes involved in mitochondrial function. This glucose-dependent transcriptional repression was in part mediated by O-GlcNAcylation of the transcription factor Sp1. Increased glucose uptake induced direct O-GlcNAcylation of many electron transport chain subunits and other mitochondrial proteins. These findings identify mitochondria as a major target of glucotoxicity. They also suggest that reduced glucose utilization in diabetic cardiomyopathy might defend against glucotoxicity and caution that restoring glucose delivery to the heart in the context of diabetes could accelerate mitochondrial dysfunction by disrupting protective metabolic adaptations. |
format | Online Article Text |
id | pubmed-7506832 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American Diabetes Association |
record_format | MEDLINE/PubMed |
spelling | pubmed-75068322021-10-01 Maintaining Myocardial Glucose Utilization in Diabetic Cardiomyopathy Accelerates Mitochondrial Dysfunction Wende, Adam R. Schell, John C. Ha, Chae-Myeong Pepin, Mark E. Khalimonchuk, Oleh Schwertz, Hansjörg Pereira, Renata O. Brahma, Manoja K. Tuinei, Joseph Contreras-Ferrat, Ariel Wang, Li Andrizzi, Chase A. Olsen, Curtis D. Bradley, Wayne E. Dell’Italia, Louis J. Dillmann, Wolfgang H. Litwin, Sheldon E. Abel, E. Dale Diabetes Metabolism Cardiac glucose uptake and oxidation are reduced in diabetes despite hyperglycemia. Mitochondrial dysfunction contributes to heart failure in diabetes. It is unclear whether these changes are adaptive or maladaptive. To directly evaluate the relationship between glucose delivery and mitochondrial dysfunction in diabetic cardiomyopathy, we generated transgenic mice with inducible cardiomyocyte-specific expression of the GLUT4. We examined mice rendered hyperglycemic following low-dose streptozotocin prior to increasing cardiomyocyte glucose uptake by transgene induction. Enhanced myocardial glucose in nondiabetic mice decreased mitochondrial ATP generation and was associated with echocardiographic evidence of diastolic dysfunction. Increasing myocardial glucose delivery after short-term diabetes onset exacerbated mitochondrial oxidative dysfunction. Transcriptomic analysis revealed that the largest changes, driven by glucose and diabetes, were in genes involved in mitochondrial function. This glucose-dependent transcriptional repression was in part mediated by O-GlcNAcylation of the transcription factor Sp1. Increased glucose uptake induced direct O-GlcNAcylation of many electron transport chain subunits and other mitochondrial proteins. These findings identify mitochondria as a major target of glucotoxicity. They also suggest that reduced glucose utilization in diabetic cardiomyopathy might defend against glucotoxicity and caution that restoring glucose delivery to the heart in the context of diabetes could accelerate mitochondrial dysfunction by disrupting protective metabolic adaptations. American Diabetes Association 2020-10 2020-05-04 /pmc/articles/PMC7506832/ /pubmed/32366681 http://dx.doi.org/10.2337/db19-1057 Text en © 2020 by the American Diabetes Association https://www.diabetesjournals.org/content/licenseReaders may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. More information is available at https://www.diabetesjournals.org/content/license. |
spellingShingle | Metabolism Wende, Adam R. Schell, John C. Ha, Chae-Myeong Pepin, Mark E. Khalimonchuk, Oleh Schwertz, Hansjörg Pereira, Renata O. Brahma, Manoja K. Tuinei, Joseph Contreras-Ferrat, Ariel Wang, Li Andrizzi, Chase A. Olsen, Curtis D. Bradley, Wayne E. Dell’Italia, Louis J. Dillmann, Wolfgang H. Litwin, Sheldon E. Abel, E. Dale Maintaining Myocardial Glucose Utilization in Diabetic Cardiomyopathy Accelerates Mitochondrial Dysfunction |
title | Maintaining Myocardial Glucose Utilization in Diabetic Cardiomyopathy Accelerates Mitochondrial Dysfunction |
title_full | Maintaining Myocardial Glucose Utilization in Diabetic Cardiomyopathy Accelerates Mitochondrial Dysfunction |
title_fullStr | Maintaining Myocardial Glucose Utilization in Diabetic Cardiomyopathy Accelerates Mitochondrial Dysfunction |
title_full_unstemmed | Maintaining Myocardial Glucose Utilization in Diabetic Cardiomyopathy Accelerates Mitochondrial Dysfunction |
title_short | Maintaining Myocardial Glucose Utilization in Diabetic Cardiomyopathy Accelerates Mitochondrial Dysfunction |
title_sort | maintaining myocardial glucose utilization in diabetic cardiomyopathy accelerates mitochondrial dysfunction |
topic | Metabolism |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7506832/ https://www.ncbi.nlm.nih.gov/pubmed/32366681 http://dx.doi.org/10.2337/db19-1057 |
work_keys_str_mv | AT wendeadamr maintainingmyocardialglucoseutilizationindiabeticcardiomyopathyacceleratesmitochondrialdysfunction AT schelljohnc maintainingmyocardialglucoseutilizationindiabeticcardiomyopathyacceleratesmitochondrialdysfunction AT hachaemyeong maintainingmyocardialglucoseutilizationindiabeticcardiomyopathyacceleratesmitochondrialdysfunction AT pepinmarke maintainingmyocardialglucoseutilizationindiabeticcardiomyopathyacceleratesmitochondrialdysfunction AT khalimonchukoleh maintainingmyocardialglucoseutilizationindiabeticcardiomyopathyacceleratesmitochondrialdysfunction AT schwertzhansjorg maintainingmyocardialglucoseutilizationindiabeticcardiomyopathyacceleratesmitochondrialdysfunction AT pereirarenatao maintainingmyocardialglucoseutilizationindiabeticcardiomyopathyacceleratesmitochondrialdysfunction AT brahmamanojak maintainingmyocardialglucoseutilizationindiabeticcardiomyopathyacceleratesmitochondrialdysfunction AT tuineijoseph maintainingmyocardialglucoseutilizationindiabeticcardiomyopathyacceleratesmitochondrialdysfunction AT contrerasferratariel maintainingmyocardialglucoseutilizationindiabeticcardiomyopathyacceleratesmitochondrialdysfunction AT wangli maintainingmyocardialglucoseutilizationindiabeticcardiomyopathyacceleratesmitochondrialdysfunction AT andrizzichasea maintainingmyocardialglucoseutilizationindiabeticcardiomyopathyacceleratesmitochondrialdysfunction AT olsencurtisd maintainingmyocardialglucoseutilizationindiabeticcardiomyopathyacceleratesmitochondrialdysfunction AT bradleywaynee maintainingmyocardialglucoseutilizationindiabeticcardiomyopathyacceleratesmitochondrialdysfunction AT dellitalialouisj maintainingmyocardialglucoseutilizationindiabeticcardiomyopathyacceleratesmitochondrialdysfunction AT dillmannwolfgangh maintainingmyocardialglucoseutilizationindiabeticcardiomyopathyacceleratesmitochondrialdysfunction AT litwinsheldone maintainingmyocardialglucoseutilizationindiabeticcardiomyopathyacceleratesmitochondrialdysfunction AT abeledale maintainingmyocardialglucoseutilizationindiabeticcardiomyopathyacceleratesmitochondrialdysfunction |