Cargando…

Panax notoginseng saponins alleviates advanced glycation end product-induced apoptosis by upregulating SIRT1 and antioxidant expression levels in HUVECs

The present study examined whether Panax notoginseng saponins (PNS) alleviated advanced glycation end product (AGE)-induced apoptosis in human umbilical vein endothelial cells (HUVECs). HUVECs were incubated with 300 µg/ml AGEs alone or AGEs and PNS (0.05, 0.5 or 1 mg/ml) for 48 h. The results of th...

Descripción completa

Detalles Bibliográficos
Autores principales: Bo, Yang, Jian, Zhang, Zhi-Jun, Sun, Quing, Wu, Hua, Zhao, Chuan-Wei, Li, Yu-Kang, Cao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7506886/
https://www.ncbi.nlm.nih.gov/pubmed/32973948
http://dx.doi.org/10.3892/etm.2020.9229
Descripción
Sumario:The present study examined whether Panax notoginseng saponins (PNS) alleviated advanced glycation end product (AGE)-induced apoptosis in human umbilical vein endothelial cells (HUVECs). HUVECs were incubated with 300 µg/ml AGEs alone or AGEs and PNS (0.05, 0.5 or 1 mg/ml) for 48 h. The results of the present study demonstrated that PNS effectively promoted cell viability, inhibited apoptosis and suppressed the activity of caspase-3 in AGE-induced HUVECs. The activities of monocyte chemoattractant protein-1 and malondialdehyde were reduced, and superoxide dismutase activity was increased following treatment with PNS. Furthermore, PNS significantly increased the expression of silent information regulator 1 (SIRT1) and transforming growth factor (TGF)-β1 proteins, and suppressed the expression of inducible nitric oxide synthase and cyclooxyggenase-2 proteins in AGE-induced HUVECs. Therefore, the present study demonstrated that PNS reduced AGE-induced apoptosis by upregulating SIRT1 and antioxidants in HUVECs. The present findings suggest that the PNS may as an important pharmacological agent for AGE-induced cardiovascular injury.