Cargando…
Distributed Non-Communicating Multi-Robot Collision Avoidance via Map-Based Deep Reinforcement Learning
It is challenging to avoid obstacles safely and efficiently for multiple robots of different shapes in distributed and communication-free scenarios, where robots do not communicate with each other and only sense other robots’ positions and obstacles around them. Most existing multi-robot collision a...
Autores principales: | Chen, Guangda, Yao, Shunyi, Ma, Jun, Pan, Lifan, Chen, Yu’an, Xu, Pei, Ji, Jianmin, Chen, Xiaoping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7506975/ https://www.ncbi.nlm.nih.gov/pubmed/32867080 http://dx.doi.org/10.3390/s20174836 |
Ejemplares similares
-
Non-Communication Decentralized Multi-Robot Collision Avoidance in Grid Map Workspace with Double Deep Q-Network
por: Chen, Lin, et al.
Publicado: (2021) -
Multimodal Deep Reinforcement Learning with Auxiliary Task for Obstacle Avoidance of Indoor Mobile Robot
por: Song, Hailuo, et al.
Publicado: (2021) -
Multi-Objective Optimal Trajectory Planning for Robotic Arms Using Deep Reinforcement Learning
por: Zhang, Shaobo, et al.
Publicado: (2023) -
Multi-Agent Deep Reinforcement Learning for Multi-Robot Applications: A Survey
por: Orr, James, et al.
Publicado: (2023) -
Driver Intent-Based Intersection Autonomous Driving Collision Avoidance Reinforcement Learning Algorithm
por: Chen, Ting, et al.
Publicado: (2022)