Cargando…

An Enzymatic TMPRSS2 Assay for Assessment of Clinical Candidates and Discovery of Inhibitors as Potential Treatment of COVID-19

[Image: see text] SARS-CoV-2 is the viral pathogen causing the COVID19 global pandemic. Consequently, much research has gone into the development of preclinical assays for the discovery of new or repurposing of FDA-approved therapies. Preventing viral entry into a host cell would be an effective ant...

Descripción completa

Detalles Bibliográficos
Autores principales: Shrimp, Jonathan H., Kales, Stephen C., Sanderson, Philip E., Simeonov, Anton, Shen, Min, Hall, Matthew D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2020
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7507803/
https://www.ncbi.nlm.nih.gov/pubmed/33062952
http://dx.doi.org/10.1021/acsptsci.0c00106
_version_ 1783585303129227264
author Shrimp, Jonathan H.
Kales, Stephen C.
Sanderson, Philip E.
Simeonov, Anton
Shen, Min
Hall, Matthew D.
author_facet Shrimp, Jonathan H.
Kales, Stephen C.
Sanderson, Philip E.
Simeonov, Anton
Shen, Min
Hall, Matthew D.
author_sort Shrimp, Jonathan H.
collection PubMed
description [Image: see text] SARS-CoV-2 is the viral pathogen causing the COVID19 global pandemic. Consequently, much research has gone into the development of preclinical assays for the discovery of new or repurposing of FDA-approved therapies. Preventing viral entry into a host cell would be an effective antiviral strategy. One mechanism for SARS-CoV-2 entry occurs when the spike protein on the surface of SARS-CoV-2 binds to an ACE2 receptor followed by cleavage at two cut sites (“priming”) that causes a conformational change allowing for viral and host membrane fusion. TMPRSS2 has an extracellular protease domain capable of cleaving the spike protein to initiate membrane fusion. A validated inhibitor of TMPRSS2 protease activity would be a valuable tool for studying the impact TMPRSS2 has in viral entry and potentially be an effective antiviral therapeutic. To enable inhibitor discovery and profiling of FDA-approved therapeutics, we describe an assay for the biochemical screening of recombinant TMPRSS2 suitable for high throughput application. We demonstrate effectiveness to quantify inhibition down to subnanomolar concentrations by assessing the inhibition of camostat, nafamostat, and gabexate, clinically approved agents in Japan. Also, we profiled a camostat metabolite, FOY-251, and bromhexine hydrochloride, an FDA-approved mucolytic cough suppressant. The rank order potency for the compounds tested are nafamostat (IC(50) = 0.27 nM), camostat (IC(50) = 6.2 nM), FOY-251 (IC(50) = 33.3 nM), and gabexate (IC(50) = 130 nM). Bromhexine hydrochloride showed no inhibition of TMPRSS2. Further profiling of camostat, nafamostat, and gabexate against a panel of recombinant proteases provides insight into selectivity and potency.
format Online
Article
Text
id pubmed-7507803
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-75078032020-09-22 An Enzymatic TMPRSS2 Assay for Assessment of Clinical Candidates and Discovery of Inhibitors as Potential Treatment of COVID-19 Shrimp, Jonathan H. Kales, Stephen C. Sanderson, Philip E. Simeonov, Anton Shen, Min Hall, Matthew D. ACS Pharmacol Transl Sci [Image: see text] SARS-CoV-2 is the viral pathogen causing the COVID19 global pandemic. Consequently, much research has gone into the development of preclinical assays for the discovery of new or repurposing of FDA-approved therapies. Preventing viral entry into a host cell would be an effective antiviral strategy. One mechanism for SARS-CoV-2 entry occurs when the spike protein on the surface of SARS-CoV-2 binds to an ACE2 receptor followed by cleavage at two cut sites (“priming”) that causes a conformational change allowing for viral and host membrane fusion. TMPRSS2 has an extracellular protease domain capable of cleaving the spike protein to initiate membrane fusion. A validated inhibitor of TMPRSS2 protease activity would be a valuable tool for studying the impact TMPRSS2 has in viral entry and potentially be an effective antiviral therapeutic. To enable inhibitor discovery and profiling of FDA-approved therapeutics, we describe an assay for the biochemical screening of recombinant TMPRSS2 suitable for high throughput application. We demonstrate effectiveness to quantify inhibition down to subnanomolar concentrations by assessing the inhibition of camostat, nafamostat, and gabexate, clinically approved agents in Japan. Also, we profiled a camostat metabolite, FOY-251, and bromhexine hydrochloride, an FDA-approved mucolytic cough suppressant. The rank order potency for the compounds tested are nafamostat (IC(50) = 0.27 nM), camostat (IC(50) = 6.2 nM), FOY-251 (IC(50) = 33.3 nM), and gabexate (IC(50) = 130 nM). Bromhexine hydrochloride showed no inhibition of TMPRSS2. Further profiling of camostat, nafamostat, and gabexate against a panel of recombinant proteases provides insight into selectivity and potency. American Chemical Society 2020-09-07 /pmc/articles/PMC7507803/ /pubmed/33062952 http://dx.doi.org/10.1021/acsptsci.0c00106 Text en This article is made available via the ACS COVID-19 subset (https://pubs.acs.org/page/vi/chemistry_coronavirus_research) for unrestricted RESEARCH re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
spellingShingle Shrimp, Jonathan H.
Kales, Stephen C.
Sanderson, Philip E.
Simeonov, Anton
Shen, Min
Hall, Matthew D.
An Enzymatic TMPRSS2 Assay for Assessment of Clinical Candidates and Discovery of Inhibitors as Potential Treatment of COVID-19
title An Enzymatic TMPRSS2 Assay for Assessment of Clinical Candidates and Discovery of Inhibitors as Potential Treatment of COVID-19
title_full An Enzymatic TMPRSS2 Assay for Assessment of Clinical Candidates and Discovery of Inhibitors as Potential Treatment of COVID-19
title_fullStr An Enzymatic TMPRSS2 Assay for Assessment of Clinical Candidates and Discovery of Inhibitors as Potential Treatment of COVID-19
title_full_unstemmed An Enzymatic TMPRSS2 Assay for Assessment of Clinical Candidates and Discovery of Inhibitors as Potential Treatment of COVID-19
title_short An Enzymatic TMPRSS2 Assay for Assessment of Clinical Candidates and Discovery of Inhibitors as Potential Treatment of COVID-19
title_sort enzymatic tmprss2 assay for assessment of clinical candidates and discovery of inhibitors as potential treatment of covid-19
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7507803/
https://www.ncbi.nlm.nih.gov/pubmed/33062952
http://dx.doi.org/10.1021/acsptsci.0c00106
work_keys_str_mv AT shrimpjonathanh anenzymatictmprss2assayforassessmentofclinicalcandidatesanddiscoveryofinhibitorsaspotentialtreatmentofcovid19
AT kalesstephenc anenzymatictmprss2assayforassessmentofclinicalcandidatesanddiscoveryofinhibitorsaspotentialtreatmentofcovid19
AT sandersonphilipe anenzymatictmprss2assayforassessmentofclinicalcandidatesanddiscoveryofinhibitorsaspotentialtreatmentofcovid19
AT simeonovanton anenzymatictmprss2assayforassessmentofclinicalcandidatesanddiscoveryofinhibitorsaspotentialtreatmentofcovid19
AT shenmin anenzymatictmprss2assayforassessmentofclinicalcandidatesanddiscoveryofinhibitorsaspotentialtreatmentofcovid19
AT hallmatthewd anenzymatictmprss2assayforassessmentofclinicalcandidatesanddiscoveryofinhibitorsaspotentialtreatmentofcovid19
AT shrimpjonathanh enzymatictmprss2assayforassessmentofclinicalcandidatesanddiscoveryofinhibitorsaspotentialtreatmentofcovid19
AT kalesstephenc enzymatictmprss2assayforassessmentofclinicalcandidatesanddiscoveryofinhibitorsaspotentialtreatmentofcovid19
AT sandersonphilipe enzymatictmprss2assayforassessmentofclinicalcandidatesanddiscoveryofinhibitorsaspotentialtreatmentofcovid19
AT simeonovanton enzymatictmprss2assayforassessmentofclinicalcandidatesanddiscoveryofinhibitorsaspotentialtreatmentofcovid19
AT shenmin enzymatictmprss2assayforassessmentofclinicalcandidatesanddiscoveryofinhibitorsaspotentialtreatmentofcovid19
AT hallmatthewd enzymatictmprss2assayforassessmentofclinicalcandidatesanddiscoveryofinhibitorsaspotentialtreatmentofcovid19