Cargando…
Genome-Wide Characterization of Host Transcriptional and Epigenetic Alterations During HIV Infection of T Lymphocytes
Background and methods: Host genomic alterations are closely related to dysfunction of CD4(+) T lymphocytes in the HIV–host interplay. However, the roles of aberrant DNA methylation and gene expression in the response to HIV infection are not fully understood. We investigated the genome-wide DNA met...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7511662/ https://www.ncbi.nlm.nih.gov/pubmed/33013899 http://dx.doi.org/10.3389/fimmu.2020.02131 |
_version_ | 1783586000759422976 |
---|---|
author | Zeng, Xi Tsui, Joseph Chi-Ching Shi, Mai Peng, Jie Cao, Cyanne Ye Kan, Lea Ling-Yu Lau, Carol Po-Ying Liang, Yonghao Wang, Lingyi Liu, Li Chen, Zhiwei Tsui, Stephen Kwok-Wing |
author_facet | Zeng, Xi Tsui, Joseph Chi-Ching Shi, Mai Peng, Jie Cao, Cyanne Ye Kan, Lea Ling-Yu Lau, Carol Po-Ying Liang, Yonghao Wang, Lingyi Liu, Li Chen, Zhiwei Tsui, Stephen Kwok-Wing |
author_sort | Zeng, Xi |
collection | PubMed |
description | Background and methods: Host genomic alterations are closely related to dysfunction of CD4(+) T lymphocytes in the HIV–host interplay. However, the roles of aberrant DNA methylation and gene expression in the response to HIV infection are not fully understood. We investigated the genome-wide DNA methylation and transcriptomic profiles in two HIV-infected T lymphocyte cell lines using high-throughput sequencing. Results: Based on DNA methylation data, we identified 3,060 hypomethylated differentially methylated regions (DMRs) and 2,659 hypermethylated DMRs in HIV-infected cells. Transcription-factor-binding motifs were significantly associated with methylation alterations, suggesting that DNA methylation modulates gene expression by affecting the binding to transcription factors during HIV infection. In support of this hypothesis, genes with promoters overlapping with DMRs were enriched in the biological function related to transcription factor activities. Furthermore, the analysis of gene expression data identified 1,633 upregulated genes and 2,142 downregulated genes on average in HIV-infected cells. These differentially expressed genes (DEGs) were significantly enriched in apoptosis-related pathways. Our results suggest alternative splicing as an additional mechanism that may contribute to T-cell apoptosis during HIV infection. We also demonstrated a genome-scale correlation between DNA methylation and gene expression in HIV-infected cells. We identified 831 genes with alterations in both DNA methylation and gene expression, which were enriched in apoptosis. Our results were validated using various experimental methods. In addition, consistent with our in silico results, a luciferase assay showed that the activity of the PDX1 and SMAD3 promoters was significantly decreased in the presence of HIV proteins, indicating the potential of these genes as genetic markers of HIV infection. Conclusions: Our results suggest important roles for DNA methylation and gene expression regulation in T-cell apoptosis during HIV infection. We propose a list of novel genes related to these processes for further investigation. This study also provides a comprehensive characterization of changes occurring at the transcriptional and epigenetic levels in T cells in response to HIV infection. |
format | Online Article Text |
id | pubmed-7511662 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-75116622020-10-02 Genome-Wide Characterization of Host Transcriptional and Epigenetic Alterations During HIV Infection of T Lymphocytes Zeng, Xi Tsui, Joseph Chi-Ching Shi, Mai Peng, Jie Cao, Cyanne Ye Kan, Lea Ling-Yu Lau, Carol Po-Ying Liang, Yonghao Wang, Lingyi Liu, Li Chen, Zhiwei Tsui, Stephen Kwok-Wing Front Immunol Immunology Background and methods: Host genomic alterations are closely related to dysfunction of CD4(+) T lymphocytes in the HIV–host interplay. However, the roles of aberrant DNA methylation and gene expression in the response to HIV infection are not fully understood. We investigated the genome-wide DNA methylation and transcriptomic profiles in two HIV-infected T lymphocyte cell lines using high-throughput sequencing. Results: Based on DNA methylation data, we identified 3,060 hypomethylated differentially methylated regions (DMRs) and 2,659 hypermethylated DMRs in HIV-infected cells. Transcription-factor-binding motifs were significantly associated with methylation alterations, suggesting that DNA methylation modulates gene expression by affecting the binding to transcription factors during HIV infection. In support of this hypothesis, genes with promoters overlapping with DMRs were enriched in the biological function related to transcription factor activities. Furthermore, the analysis of gene expression data identified 1,633 upregulated genes and 2,142 downregulated genes on average in HIV-infected cells. These differentially expressed genes (DEGs) were significantly enriched in apoptosis-related pathways. Our results suggest alternative splicing as an additional mechanism that may contribute to T-cell apoptosis during HIV infection. We also demonstrated a genome-scale correlation between DNA methylation and gene expression in HIV-infected cells. We identified 831 genes with alterations in both DNA methylation and gene expression, which were enriched in apoptosis. Our results were validated using various experimental methods. In addition, consistent with our in silico results, a luciferase assay showed that the activity of the PDX1 and SMAD3 promoters was significantly decreased in the presence of HIV proteins, indicating the potential of these genes as genetic markers of HIV infection. Conclusions: Our results suggest important roles for DNA methylation and gene expression regulation in T-cell apoptosis during HIV infection. We propose a list of novel genes related to these processes for further investigation. This study also provides a comprehensive characterization of changes occurring at the transcriptional and epigenetic levels in T cells in response to HIV infection. Frontiers Media S.A. 2020-09-10 /pmc/articles/PMC7511662/ /pubmed/33013899 http://dx.doi.org/10.3389/fimmu.2020.02131 Text en Copyright © 2020 Zeng, Tsui, Shi, Peng, Cao, Kan, Lau, Liang, Wang, Liu, Chen and Tsui. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Immunology Zeng, Xi Tsui, Joseph Chi-Ching Shi, Mai Peng, Jie Cao, Cyanne Ye Kan, Lea Ling-Yu Lau, Carol Po-Ying Liang, Yonghao Wang, Lingyi Liu, Li Chen, Zhiwei Tsui, Stephen Kwok-Wing Genome-Wide Characterization of Host Transcriptional and Epigenetic Alterations During HIV Infection of T Lymphocytes |
title | Genome-Wide Characterization of Host Transcriptional and Epigenetic Alterations During HIV Infection of T Lymphocytes |
title_full | Genome-Wide Characterization of Host Transcriptional and Epigenetic Alterations During HIV Infection of T Lymphocytes |
title_fullStr | Genome-Wide Characterization of Host Transcriptional and Epigenetic Alterations During HIV Infection of T Lymphocytes |
title_full_unstemmed | Genome-Wide Characterization of Host Transcriptional and Epigenetic Alterations During HIV Infection of T Lymphocytes |
title_short | Genome-Wide Characterization of Host Transcriptional and Epigenetic Alterations During HIV Infection of T Lymphocytes |
title_sort | genome-wide characterization of host transcriptional and epigenetic alterations during hiv infection of t lymphocytes |
topic | Immunology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7511662/ https://www.ncbi.nlm.nih.gov/pubmed/33013899 http://dx.doi.org/10.3389/fimmu.2020.02131 |
work_keys_str_mv | AT zengxi genomewidecharacterizationofhosttranscriptionalandepigeneticalterationsduringhivinfectionoftlymphocytes AT tsuijosephchiching genomewidecharacterizationofhosttranscriptionalandepigeneticalterationsduringhivinfectionoftlymphocytes AT shimai genomewidecharacterizationofhosttranscriptionalandepigeneticalterationsduringhivinfectionoftlymphocytes AT pengjie genomewidecharacterizationofhosttranscriptionalandepigeneticalterationsduringhivinfectionoftlymphocytes AT caocyanneye genomewidecharacterizationofhosttranscriptionalandepigeneticalterationsduringhivinfectionoftlymphocytes AT kanlealingyu genomewidecharacterizationofhosttranscriptionalandepigeneticalterationsduringhivinfectionoftlymphocytes AT laucarolpoying genomewidecharacterizationofhosttranscriptionalandepigeneticalterationsduringhivinfectionoftlymphocytes AT liangyonghao genomewidecharacterizationofhosttranscriptionalandepigeneticalterationsduringhivinfectionoftlymphocytes AT wanglingyi genomewidecharacterizationofhosttranscriptionalandepigeneticalterationsduringhivinfectionoftlymphocytes AT liuli genomewidecharacterizationofhosttranscriptionalandepigeneticalterationsduringhivinfectionoftlymphocytes AT chenzhiwei genomewidecharacterizationofhosttranscriptionalandepigeneticalterationsduringhivinfectionoftlymphocytes AT tsuistephenkwokwing genomewidecharacterizationofhosttranscriptionalandepigeneticalterationsduringhivinfectionoftlymphocytes |