Cargando…
FOXO3a acts to suppress DNA double‐strand break‐induced mutations
Genomic instability is one of the hallmarks of aging, and both DNA damage and mutations have been found to accumulate with age in different species. Certain gene families, such as sirtuins and the FoxO family of transcription factors, have been shown to play a role in lifespan extension. However, th...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7511859/ https://www.ncbi.nlm.nih.gov/pubmed/32720744 http://dx.doi.org/10.1111/acel.13184 |
_version_ | 1783586041072975872 |
---|---|
author | White, Ryan R. Maslov, Alexander Y. Lee, Moonsook Wilner, Samantha E. Levy, Matthew Vijg, Jan |
author_facet | White, Ryan R. Maslov, Alexander Y. Lee, Moonsook Wilner, Samantha E. Levy, Matthew Vijg, Jan |
author_sort | White, Ryan R. |
collection | PubMed |
description | Genomic instability is one of the hallmarks of aging, and both DNA damage and mutations have been found to accumulate with age in different species. Certain gene families, such as sirtuins and the FoxO family of transcription factors, have been shown to play a role in lifespan extension. However, the mechanism(s) underlying the increased longevity associated with these genes remains largely unknown and may involve the regulation of responses to cellular stressors, such as DNA damage. Here, we report that FOXO3a reduces genomic instability in cultured mouse embryonic fibroblasts (MEFs) treated with agents that induce DNA double‐strand breaks (DSBs), that is, clastogens. We show that DSB treatment of both primary human and mouse fibroblasts upregulates FOXO3a expression. FOXO3a ablation in MEFs harboring the mutational reporter gene lacZ resulted in an increase in genome rearrangements after bleomycin treatment; conversely, overexpression of human FOXO3a was found to suppress mutation accumulation in response to bleomycin. We also show that overexpression of FOXO3a in human primary fibroblasts decreases DSB‐induced γH2AX foci. Knocking out FOXO3a in mES cells increased the frequency of homologous recombination and non‐homologous end‐joining events. These results provide the first direct evidence that FOXO3a plays a role in suppressing genome instability, possibly by suppressing genome rearrangements. |
format | Online Article Text |
id | pubmed-7511859 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-75118592020-09-30 FOXO3a acts to suppress DNA double‐strand break‐induced mutations White, Ryan R. Maslov, Alexander Y. Lee, Moonsook Wilner, Samantha E. Levy, Matthew Vijg, Jan Aging Cell Short Take Genomic instability is one of the hallmarks of aging, and both DNA damage and mutations have been found to accumulate with age in different species. Certain gene families, such as sirtuins and the FoxO family of transcription factors, have been shown to play a role in lifespan extension. However, the mechanism(s) underlying the increased longevity associated with these genes remains largely unknown and may involve the regulation of responses to cellular stressors, such as DNA damage. Here, we report that FOXO3a reduces genomic instability in cultured mouse embryonic fibroblasts (MEFs) treated with agents that induce DNA double‐strand breaks (DSBs), that is, clastogens. We show that DSB treatment of both primary human and mouse fibroblasts upregulates FOXO3a expression. FOXO3a ablation in MEFs harboring the mutational reporter gene lacZ resulted in an increase in genome rearrangements after bleomycin treatment; conversely, overexpression of human FOXO3a was found to suppress mutation accumulation in response to bleomycin. We also show that overexpression of FOXO3a in human primary fibroblasts decreases DSB‐induced γH2AX foci. Knocking out FOXO3a in mES cells increased the frequency of homologous recombination and non‐homologous end‐joining events. These results provide the first direct evidence that FOXO3a plays a role in suppressing genome instability, possibly by suppressing genome rearrangements. John Wiley and Sons Inc. 2020-07-28 2020-09 /pmc/articles/PMC7511859/ /pubmed/32720744 http://dx.doi.org/10.1111/acel.13184 Text en © 2020 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Short Take White, Ryan R. Maslov, Alexander Y. Lee, Moonsook Wilner, Samantha E. Levy, Matthew Vijg, Jan FOXO3a acts to suppress DNA double‐strand break‐induced mutations |
title | FOXO3a acts to suppress DNA double‐strand break‐induced mutations |
title_full | FOXO3a acts to suppress DNA double‐strand break‐induced mutations |
title_fullStr | FOXO3a acts to suppress DNA double‐strand break‐induced mutations |
title_full_unstemmed | FOXO3a acts to suppress DNA double‐strand break‐induced mutations |
title_short | FOXO3a acts to suppress DNA double‐strand break‐induced mutations |
title_sort | foxo3a acts to suppress dna double‐strand break‐induced mutations |
topic | Short Take |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7511859/ https://www.ncbi.nlm.nih.gov/pubmed/32720744 http://dx.doi.org/10.1111/acel.13184 |
work_keys_str_mv | AT whiteryanr foxo3aactstosuppressdnadoublestrandbreakinducedmutations AT maslovalexandery foxo3aactstosuppressdnadoublestrandbreakinducedmutations AT leemoonsook foxo3aactstosuppressdnadoublestrandbreakinducedmutations AT wilnersamanthae foxo3aactstosuppressdnadoublestrandbreakinducedmutations AT levymatthew foxo3aactstosuppressdnadoublestrandbreakinducedmutations AT vijgjan foxo3aactstosuppressdnadoublestrandbreakinducedmutations |