Cargando…

Bayesian Recurrent Neural Network Models for Forecasting and Quantifying Uncertainty in Spatial-Temporal Data

Recurrent neural networks (RNNs) are nonlinear dynamical models commonly used in the machine learning and dynamical systems literature to represent complex dynamical or sequential relationships between variables. Recently, as deep learning models have become more common, RNNs have been used to forec...

Descripción completa

Detalles Bibliográficos
Autores principales: McDermott, Patrick L., Wikle, Christopher K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514666/
https://www.ncbi.nlm.nih.gov/pubmed/33266899
http://dx.doi.org/10.3390/e21020184