Cargando…
Bayesian Recurrent Neural Network Models for Forecasting and Quantifying Uncertainty in Spatial-Temporal Data
Recurrent neural networks (RNNs) are nonlinear dynamical models commonly used in the machine learning and dynamical systems literature to represent complex dynamical or sequential relationships between variables. Recently, as deep learning models have become more common, RNNs have been used to forec...
Autores principales: | McDermott, Patrick L., Wikle, Christopher K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514666/ https://www.ncbi.nlm.nih.gov/pubmed/33266899 http://dx.doi.org/10.3390/e21020184 |
Ejemplares similares
-
A hierarchical spatiotemporal analog forecasting model for count data
por: McDermott, Patrick L., et al.
Publicado: (2017) -
A Hierarchical Bayesian Model to Quantify Uncertainty of Stream Water Temperature Forecasts
por: Bal, Guillaume, et al.
Publicado: (2014) -
Quantifying uncertainty in brain network measures using Bayesian connectomics
por: Janssen, Ronald J., et al.
Publicado: (2014) -
An introduction to Bayesian neural networks and uncertainty quantification in neural networks
por: Talpini, Jacopo
Publicado: (2023) -
Quantifying Model Form Uncertainty of Epidemic Forecasting Models
from Incidence Data
por: Hengartner, Nicolas, et al.
Publicado: (2018)