Cargando…
Bayesian Uncertainty Quantification with Multi-Fidelity Data and Gaussian Processes for Impedance Cardiography of Aortic Dissection
In 2000, Kennedy and O’Hagan proposed a model for uncertainty quantification that combines data of several levels of sophistication, fidelity, quality, or accuracy, e.g., a coarse and a fine mesh in finite-element simulations. They assumed each level to be describable by a Gaussian process, and used...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7516489/ https://www.ncbi.nlm.nih.gov/pubmed/33285833 http://dx.doi.org/10.3390/e22010058 |