Cargando…
Utilizing Amari-Alpha Divergence to Stabilize the Training of Generative Adversarial Networks
Generative Adversarial Nets (GANs) are one of the most popular architectures for image generation, which has achieved significant progress in generating high-resolution, diverse image samples. The normal GANs are supposed to minimize the Kullback–Leibler divergence between distributions of natural a...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7516886/ https://www.ncbi.nlm.nih.gov/pubmed/33286184 http://dx.doi.org/10.3390/e22040410 |