Cargando…
Straggler-Aware Distributed Learning: Communication–Computation Latency Trade-Off
When gradient descent (GD) is scaled to many parallel workers for large-scale machine learning applications, its per-iteration computation time is limited by straggling workers. Straggling workers can be tolerated by assigning redundant computations and/or coding across data and computations, but in...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7517046/ https://www.ncbi.nlm.nih.gov/pubmed/33286316 http://dx.doi.org/10.3390/e22050544 |