Cargando…
Ensemble Learning Using Fuzzy Weights to Improve Learning Style Identification for Adapted Instructional Routines
Mobile personalized learning can be achieved by the identification of students’ learning styles; however, this happens with the completion of large questionnaires. This task has been reported as tedious and time-consuming, causing random selection of the questionnaires’ choices, and thus, erroneous...
Autores principales: | Troussas, Christos, Krouska, Akrivi, Sgouropoulou, Cleo, Voyiatzis, Ioannis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7517283/ https://www.ncbi.nlm.nih.gov/pubmed/33286506 http://dx.doi.org/10.3390/e22070735 |
Ejemplares similares
-
Personalization of the Learning Path within an Augmented Reality Spatial Ability Training Application Based on Fuzzy Weights
por: Papakostas, Christos, et al.
Publicado: (2022) -
Improving Learner-Computer Interaction through Intelligent Learning Material Delivery Using Instructional Design Modeling
por: Troussas, Christos, et al.
Publicado: (2021) -
Mobile game-based learning as a solution in COVID-19 era: Modeling the pedagogical affordance and student interactions
por: Krouska, Akrivi, et al.
Publicado: (2021) -
Measuring User Experience, Usability and Interactivity of a Personalized Mobile Augmented Reality Training System
por: Papakostas, Christos, et al.
Publicado: (2021) -
Editorial: Artificial intelligence techniques for personalized educational software
por: Troussas, Christos, et al.
Publicado: (2022)