Cargando…
Discrete-Time Fractional, Variable-Order PID Controller for a Plant with Delay
In this paper, we discuss the implementation and tuning algorithms of a variable-, fractional-order Proportional–Integral–Derivative (PID) controller based on Grünwald–Letnikov difference definition. All simulations are executed for the third-order plant with a delay. The results of a unit step resp...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7517321/ https://www.ncbi.nlm.nih.gov/pubmed/33286543 http://dx.doi.org/10.3390/e22070771 |
Sumario: | In this paper, we discuss the implementation and tuning algorithms of a variable-, fractional-order Proportional–Integral–Derivative (PID) controller based on Grünwald–Letnikov difference definition. All simulations are executed for the third-order plant with a delay. The results of a unit step response for all described implementations are presented in a graphical and tabular form. As the qualitative criteria, we use three different error values, which are the following: a summation of squared error (SSE), a summation of squared time weighted error (SSTE) and a summation of squared time-squared weighted error (SST2E). Besides three types of error values, obtained results are additionally evaluated on the basis of an overshoot and a rise time of the output signals achieved by systems with the designed controllers. |
---|