Cargando…

Ultimate suppression of thermal transport in amorphous silicon nitride by phononic nanostructure

Engineering the thermal conductivity of amorphous materials is highly essential for the thermal management of future electronic devices. Here, we demonstrate the impact of ultrafine nanostructuring on the thermal conductivity reduction of amorphous silicon nitride (a-Si(3)N(4)) thin films, in which...

Descripción completa

Detalles Bibliográficos
Autores principales: Tambo, Naoki, Liao, Yuxuan, Zhou, Chun, Ashley, Elizabeth Michiko, Takahashi, Kouhei, Nealey, Paul F., Naito, Yasuyuki, Shiomi, Junichiro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7518865/
https://www.ncbi.nlm.nih.gov/pubmed/32978150
http://dx.doi.org/10.1126/sciadv.abc0075
_version_ 1783587468224757760
author Tambo, Naoki
Liao, Yuxuan
Zhou, Chun
Ashley, Elizabeth Michiko
Takahashi, Kouhei
Nealey, Paul F.
Naito, Yasuyuki
Shiomi, Junichiro
author_facet Tambo, Naoki
Liao, Yuxuan
Zhou, Chun
Ashley, Elizabeth Michiko
Takahashi, Kouhei
Nealey, Paul F.
Naito, Yasuyuki
Shiomi, Junichiro
author_sort Tambo, Naoki
collection PubMed
description Engineering the thermal conductivity of amorphous materials is highly essential for the thermal management of future electronic devices. Here, we demonstrate the impact of ultrafine nanostructuring on the thermal conductivity reduction of amorphous silicon nitride (a-Si(3)N(4)) thin films, in which the thermal transport is inherently impeded by the atomic disorders. Ultrafine nanostructuring with feature sizes below 20 nm allows us to fully suppress contribution of the propagating vibrational modes (propagons), leaving only the diffusive vibrational modes (diffusons) to contribute to thermal transport in a-Si(3)N(4). A combination of the phonon-gas kinetics model and the Allen-Feldmann theory reproduced the measured results without any fitting parameters. The thermal conductivity reduction was explained as extremely strong diffusive boundary scattering of both propagons and diffusons. These findings give rise to substantial tunability of thermal conductivity of amorphous materials, which enables us to provide better thermal solutions in microelectronic devices.
format Online
Article
Text
id pubmed-7518865
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-75188652020-10-02 Ultimate suppression of thermal transport in amorphous silicon nitride by phononic nanostructure Tambo, Naoki Liao, Yuxuan Zhou, Chun Ashley, Elizabeth Michiko Takahashi, Kouhei Nealey, Paul F. Naito, Yasuyuki Shiomi, Junichiro Sci Adv Research Articles Engineering the thermal conductivity of amorphous materials is highly essential for the thermal management of future electronic devices. Here, we demonstrate the impact of ultrafine nanostructuring on the thermal conductivity reduction of amorphous silicon nitride (a-Si(3)N(4)) thin films, in which the thermal transport is inherently impeded by the atomic disorders. Ultrafine nanostructuring with feature sizes below 20 nm allows us to fully suppress contribution of the propagating vibrational modes (propagons), leaving only the diffusive vibrational modes (diffusons) to contribute to thermal transport in a-Si(3)N(4). A combination of the phonon-gas kinetics model and the Allen-Feldmann theory reproduced the measured results without any fitting parameters. The thermal conductivity reduction was explained as extremely strong diffusive boundary scattering of both propagons and diffusons. These findings give rise to substantial tunability of thermal conductivity of amorphous materials, which enables us to provide better thermal solutions in microelectronic devices. American Association for the Advancement of Science 2020-09-25 /pmc/articles/PMC7518865/ /pubmed/32978150 http://dx.doi.org/10.1126/sciadv.abc0075 Text en Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). https://creativecommons.org/licenses/by/4.0/ https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution license (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Tambo, Naoki
Liao, Yuxuan
Zhou, Chun
Ashley, Elizabeth Michiko
Takahashi, Kouhei
Nealey, Paul F.
Naito, Yasuyuki
Shiomi, Junichiro
Ultimate suppression of thermal transport in amorphous silicon nitride by phononic nanostructure
title Ultimate suppression of thermal transport in amorphous silicon nitride by phononic nanostructure
title_full Ultimate suppression of thermal transport in amorphous silicon nitride by phononic nanostructure
title_fullStr Ultimate suppression of thermal transport in amorphous silicon nitride by phononic nanostructure
title_full_unstemmed Ultimate suppression of thermal transport in amorphous silicon nitride by phononic nanostructure
title_short Ultimate suppression of thermal transport in amorphous silicon nitride by phononic nanostructure
title_sort ultimate suppression of thermal transport in amorphous silicon nitride by phononic nanostructure
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7518865/
https://www.ncbi.nlm.nih.gov/pubmed/32978150
http://dx.doi.org/10.1126/sciadv.abc0075
work_keys_str_mv AT tambonaoki ultimatesuppressionofthermaltransportinamorphoussiliconnitridebyphononicnanostructure
AT liaoyuxuan ultimatesuppressionofthermaltransportinamorphoussiliconnitridebyphononicnanostructure
AT zhouchun ultimatesuppressionofthermaltransportinamorphoussiliconnitridebyphononicnanostructure
AT ashleyelizabethmichiko ultimatesuppressionofthermaltransportinamorphoussiliconnitridebyphononicnanostructure
AT takahashikouhei ultimatesuppressionofthermaltransportinamorphoussiliconnitridebyphononicnanostructure
AT nealeypaulf ultimatesuppressionofthermaltransportinamorphoussiliconnitridebyphononicnanostructure
AT naitoyasuyuki ultimatesuppressionofthermaltransportinamorphoussiliconnitridebyphononicnanostructure
AT shiomijunichiro ultimatesuppressionofthermaltransportinamorphoussiliconnitridebyphononicnanostructure