Cargando…

Modulating Isoprenoid Biosynthesis Increases Lipooligosaccharides and Restores Acinetobacter baumannii Resistance to Host and Antibiotic Stress

Acinetobacter baumannii is a leading cause of ventilator-associated pneumonia and a critical threat due to multidrug resistance. The A. baumannii outer membrane is an asymmetric lipid bilayer composed of inner leaflet glycerophospholipids and outer leaflet lipooligosaccharides. Deleting mlaF of the...

Descripción completa

Detalles Bibliográficos
Autores principales: Palmer, Lauren D., Minor, Keaton E., Mettlach, Joshua A., Rivera, Emilio S., Boyd, Kelli L., Caprioli, Richard M., Spraggins, Jeffrey M., Dalebroux, Zachary D., Skaar, Eric P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7519801/
https://www.ncbi.nlm.nih.gov/pubmed/32905776
http://dx.doi.org/10.1016/j.celrep.2020.108129
_version_ 1783587644817539072
author Palmer, Lauren D.
Minor, Keaton E.
Mettlach, Joshua A.
Rivera, Emilio S.
Boyd, Kelli L.
Caprioli, Richard M.
Spraggins, Jeffrey M.
Dalebroux, Zachary D.
Skaar, Eric P.
author_facet Palmer, Lauren D.
Minor, Keaton E.
Mettlach, Joshua A.
Rivera, Emilio S.
Boyd, Kelli L.
Caprioli, Richard M.
Spraggins, Jeffrey M.
Dalebroux, Zachary D.
Skaar, Eric P.
author_sort Palmer, Lauren D.
collection PubMed
description Acinetobacter baumannii is a leading cause of ventilator-associated pneumonia and a critical threat due to multidrug resistance. The A. baumannii outer membrane is an asymmetric lipid bilayer composed of inner leaflet glycerophospholipids and outer leaflet lipooligosaccharides. Deleting mlaF of the maintenance of lipid asymmetry (Mla) system causes A. baumannii to become more susceptible to pulmonary surfactants and antibiotics and decreases bacterial survival in the lungs of mice. Spontaneous suppressor mutants isolated from infected mice contain an ISAba11 insertion upstream of the ispB initiation codon, an essential isoprenoid biosynthesis gene. The insertion restores antimicrobial resistance and virulence to ΔmlaF. The suppressor strain increases lipooligosaccharides, suggesting that the mechanism involves balancing the glycerophospholipids/lipooligosaccharides ratio on the bacterial surface. An identical insertion exists in an extensively drug-resistant A. baumannii isolate, demonstrating its clinical relevance. These data show that the stresses bacteria encounter during infection select for genomic rearrangements that increase resistance to antimicrobials.
format Online
Article
Text
id pubmed-7519801
institution National Center for Biotechnology Information
language English
publishDate 2020
record_format MEDLINE/PubMed
spelling pubmed-75198012020-09-26 Modulating Isoprenoid Biosynthesis Increases Lipooligosaccharides and Restores Acinetobacter baumannii Resistance to Host and Antibiotic Stress Palmer, Lauren D. Minor, Keaton E. Mettlach, Joshua A. Rivera, Emilio S. Boyd, Kelli L. Caprioli, Richard M. Spraggins, Jeffrey M. Dalebroux, Zachary D. Skaar, Eric P. Cell Rep Article Acinetobacter baumannii is a leading cause of ventilator-associated pneumonia and a critical threat due to multidrug resistance. The A. baumannii outer membrane is an asymmetric lipid bilayer composed of inner leaflet glycerophospholipids and outer leaflet lipooligosaccharides. Deleting mlaF of the maintenance of lipid asymmetry (Mla) system causes A. baumannii to become more susceptible to pulmonary surfactants and antibiotics and decreases bacterial survival in the lungs of mice. Spontaneous suppressor mutants isolated from infected mice contain an ISAba11 insertion upstream of the ispB initiation codon, an essential isoprenoid biosynthesis gene. The insertion restores antimicrobial resistance and virulence to ΔmlaF. The suppressor strain increases lipooligosaccharides, suggesting that the mechanism involves balancing the glycerophospholipids/lipooligosaccharides ratio on the bacterial surface. An identical insertion exists in an extensively drug-resistant A. baumannii isolate, demonstrating its clinical relevance. These data show that the stresses bacteria encounter during infection select for genomic rearrangements that increase resistance to antimicrobials. 2020-09-08 /pmc/articles/PMC7519801/ /pubmed/32905776 http://dx.doi.org/10.1016/j.celrep.2020.108129 Text en This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Palmer, Lauren D.
Minor, Keaton E.
Mettlach, Joshua A.
Rivera, Emilio S.
Boyd, Kelli L.
Caprioli, Richard M.
Spraggins, Jeffrey M.
Dalebroux, Zachary D.
Skaar, Eric P.
Modulating Isoprenoid Biosynthesis Increases Lipooligosaccharides and Restores Acinetobacter baumannii Resistance to Host and Antibiotic Stress
title Modulating Isoprenoid Biosynthesis Increases Lipooligosaccharides and Restores Acinetobacter baumannii Resistance to Host and Antibiotic Stress
title_full Modulating Isoprenoid Biosynthesis Increases Lipooligosaccharides and Restores Acinetobacter baumannii Resistance to Host and Antibiotic Stress
title_fullStr Modulating Isoprenoid Biosynthesis Increases Lipooligosaccharides and Restores Acinetobacter baumannii Resistance to Host and Antibiotic Stress
title_full_unstemmed Modulating Isoprenoid Biosynthesis Increases Lipooligosaccharides and Restores Acinetobacter baumannii Resistance to Host and Antibiotic Stress
title_short Modulating Isoprenoid Biosynthesis Increases Lipooligosaccharides and Restores Acinetobacter baumannii Resistance to Host and Antibiotic Stress
title_sort modulating isoprenoid biosynthesis increases lipooligosaccharides and restores acinetobacter baumannii resistance to host and antibiotic stress
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7519801/
https://www.ncbi.nlm.nih.gov/pubmed/32905776
http://dx.doi.org/10.1016/j.celrep.2020.108129
work_keys_str_mv AT palmerlaurend modulatingisoprenoidbiosynthesisincreaseslipooligosaccharidesandrestoresacinetobacterbaumanniiresistancetohostandantibioticstress
AT minorkeatone modulatingisoprenoidbiosynthesisincreaseslipooligosaccharidesandrestoresacinetobacterbaumanniiresistancetohostandantibioticstress
AT mettlachjoshuaa modulatingisoprenoidbiosynthesisincreaseslipooligosaccharidesandrestoresacinetobacterbaumanniiresistancetohostandantibioticstress
AT riveraemilios modulatingisoprenoidbiosynthesisincreaseslipooligosaccharidesandrestoresacinetobacterbaumanniiresistancetohostandantibioticstress
AT boydkellil modulatingisoprenoidbiosynthesisincreaseslipooligosaccharidesandrestoresacinetobacterbaumanniiresistancetohostandantibioticstress
AT capriolirichardm modulatingisoprenoidbiosynthesisincreaseslipooligosaccharidesandrestoresacinetobacterbaumanniiresistancetohostandantibioticstress
AT spragginsjeffreym modulatingisoprenoidbiosynthesisincreaseslipooligosaccharidesandrestoresacinetobacterbaumanniiresistancetohostandantibioticstress
AT dalebrouxzacharyd modulatingisoprenoidbiosynthesisincreaseslipooligosaccharidesandrestoresacinetobacterbaumanniiresistancetohostandantibioticstress
AT skaarericp modulatingisoprenoidbiosynthesisincreaseslipooligosaccharidesandrestoresacinetobacterbaumanniiresistancetohostandantibioticstress