Cargando…

Shikonin overcomes drug resistance and induces necroptosis by regulating the miR-92a-1-5p/MLKL axis in chronic myeloid leukemia

Development of resistance to tyrosine kinase inhibitors (TKIs) targeting the BCR/ABL fusion protein represents a major challenge in the treatment of chronic myeloid leukemia (CML). Since apoptosis resistance is the fundamental mechanism impeding TKIs’ therapeutic effects, alternative approaches that...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Xianbo, Chen, Zhenzhen, Ni, Fan, Ye, Xiujin, Qian, Wenbin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7521527/
https://www.ncbi.nlm.nih.gov/pubmed/32927433
http://dx.doi.org/10.18632/aging.103844
Descripción
Sumario:Development of resistance to tyrosine kinase inhibitors (TKIs) targeting the BCR/ABL fusion protein represents a major challenge in the treatment of chronic myeloid leukemia (CML). Since apoptosis resistance is the fundamental mechanism impeding TKIs’ therapeutic effects, alternative approaches that induce nonapoptotic cell death are being pursued to treat TKI-resistant CML. Induction of necroptosis, a distinct, caspase-independent form of programmed cell death, may be a valuable strategy in this respect. The present study shows that shikonin, an herbal compound used in traditional Chinese medicine, overcomes TKI resistance in BCR/ABL-positive CML cells by inducing necroptosis via activation of RIPK1/RIPK3/MLKL signaling. This effect occurs both in vitro and in vivo and involves downregulation of miR-92a-1-5p, a poor-prognosis marker frequently overexpressed in leukemia patients. Based on gene expression experiments, we conclude that miR-92a-1-5p promotes CML progression by inhibiting MLKL expression. Accordingly, we show that antagomiR-mediated in vivo inhibition of miR-92a-1-5p reduces the growth of CML tumors in mice through necroptosis induction. Our research suggests that therapies that relieve MLKL suppression by targeting miR-92a-1-5p may represent a useful strategy to treat TKI-refractory CML.