Cargando…

Reproducibility across single-cell RNA-seq protocols for spatial ordering analysis

As newer single-cell protocols generate increasingly more cells at reduced sequencing depths, the value of a higher read depth may be overlooked. Using data from three different single-cell RNA-seq protocols that lend themselves to having either higher read depth (Smart-seq) or many cells (MARS-seq...

Descripción completa

Detalles Bibliográficos
Autores principales: Seirup, Morten, Chu, Li-Fang, Sengupta, Srikumar, Leng, Ning, Browder, Hadley, Kapadia, Kevin, Shafer, Christina M., Duffin, Bret, Elwell, Angela L., Bolin, Jennifer M., Swanson, Scott, Stewart, Ron, Kendziorski, Christina, Thomson, James A., Bacher, Rhonda
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7521718/
https://www.ncbi.nlm.nih.gov/pubmed/32986734
http://dx.doi.org/10.1371/journal.pone.0239711
_version_ 1783588030324408320
author Seirup, Morten
Chu, Li-Fang
Sengupta, Srikumar
Leng, Ning
Browder, Hadley
Kapadia, Kevin
Shafer, Christina M.
Duffin, Bret
Elwell, Angela L.
Bolin, Jennifer M.
Swanson, Scott
Stewart, Ron
Kendziorski, Christina
Thomson, James A.
Bacher, Rhonda
author_facet Seirup, Morten
Chu, Li-Fang
Sengupta, Srikumar
Leng, Ning
Browder, Hadley
Kapadia, Kevin
Shafer, Christina M.
Duffin, Bret
Elwell, Angela L.
Bolin, Jennifer M.
Swanson, Scott
Stewart, Ron
Kendziorski, Christina
Thomson, James A.
Bacher, Rhonda
author_sort Seirup, Morten
collection PubMed
description As newer single-cell protocols generate increasingly more cells at reduced sequencing depths, the value of a higher read depth may be overlooked. Using data from three different single-cell RNA-seq protocols that lend themselves to having either higher read depth (Smart-seq) or many cells (MARS-seq and 10X), we evaluate their ability to recapitulate biological signals in the context of spatial reconstruction. Overall, we find gene expression profiles after spatial reconstruction analysis are highly reproducible between datasets despite being generated by different protocols and using different computational algorithms. While UMI-based protocols such as 10X and MARS-seq allow for capturing more cells, Smart-seq’s higher sensitivity and read-depth allow for analysis of lower expressed genes and isoforms. Additionally, we evaluate trade-offs for each protocol by performing subsampling analyses and find that optimizing the balance between sequencing depth and number of cells within a protocol is necessary for efficient use of resources. Our analysis emphasizes the importance of selecting a protocol based on the biological questions and features of interest.
format Online
Article
Text
id pubmed-7521718
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-75217182020-10-06 Reproducibility across single-cell RNA-seq protocols for spatial ordering analysis Seirup, Morten Chu, Li-Fang Sengupta, Srikumar Leng, Ning Browder, Hadley Kapadia, Kevin Shafer, Christina M. Duffin, Bret Elwell, Angela L. Bolin, Jennifer M. Swanson, Scott Stewart, Ron Kendziorski, Christina Thomson, James A. Bacher, Rhonda PLoS One Research Article As newer single-cell protocols generate increasingly more cells at reduced sequencing depths, the value of a higher read depth may be overlooked. Using data from three different single-cell RNA-seq protocols that lend themselves to having either higher read depth (Smart-seq) or many cells (MARS-seq and 10X), we evaluate their ability to recapitulate biological signals in the context of spatial reconstruction. Overall, we find gene expression profiles after spatial reconstruction analysis are highly reproducible between datasets despite being generated by different protocols and using different computational algorithms. While UMI-based protocols such as 10X and MARS-seq allow for capturing more cells, Smart-seq’s higher sensitivity and read-depth allow for analysis of lower expressed genes and isoforms. Additionally, we evaluate trade-offs for each protocol by performing subsampling analyses and find that optimizing the balance between sequencing depth and number of cells within a protocol is necessary for efficient use of resources. Our analysis emphasizes the importance of selecting a protocol based on the biological questions and features of interest. Public Library of Science 2020-09-28 /pmc/articles/PMC7521718/ /pubmed/32986734 http://dx.doi.org/10.1371/journal.pone.0239711 Text en © 2020 Seirup et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Seirup, Morten
Chu, Li-Fang
Sengupta, Srikumar
Leng, Ning
Browder, Hadley
Kapadia, Kevin
Shafer, Christina M.
Duffin, Bret
Elwell, Angela L.
Bolin, Jennifer M.
Swanson, Scott
Stewart, Ron
Kendziorski, Christina
Thomson, James A.
Bacher, Rhonda
Reproducibility across single-cell RNA-seq protocols for spatial ordering analysis
title Reproducibility across single-cell RNA-seq protocols for spatial ordering analysis
title_full Reproducibility across single-cell RNA-seq protocols for spatial ordering analysis
title_fullStr Reproducibility across single-cell RNA-seq protocols for spatial ordering analysis
title_full_unstemmed Reproducibility across single-cell RNA-seq protocols for spatial ordering analysis
title_short Reproducibility across single-cell RNA-seq protocols for spatial ordering analysis
title_sort reproducibility across single-cell rna-seq protocols for spatial ordering analysis
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7521718/
https://www.ncbi.nlm.nih.gov/pubmed/32986734
http://dx.doi.org/10.1371/journal.pone.0239711
work_keys_str_mv AT seirupmorten reproducibilityacrosssinglecellrnaseqprotocolsforspatialorderinganalysis
AT chulifang reproducibilityacrosssinglecellrnaseqprotocolsforspatialorderinganalysis
AT senguptasrikumar reproducibilityacrosssinglecellrnaseqprotocolsforspatialorderinganalysis
AT lengning reproducibilityacrosssinglecellrnaseqprotocolsforspatialorderinganalysis
AT browderhadley reproducibilityacrosssinglecellrnaseqprotocolsforspatialorderinganalysis
AT kapadiakevin reproducibilityacrosssinglecellrnaseqprotocolsforspatialorderinganalysis
AT shaferchristinam reproducibilityacrosssinglecellrnaseqprotocolsforspatialorderinganalysis
AT duffinbret reproducibilityacrosssinglecellrnaseqprotocolsforspatialorderinganalysis
AT elwellangelal reproducibilityacrosssinglecellrnaseqprotocolsforspatialorderinganalysis
AT bolinjenniferm reproducibilityacrosssinglecellrnaseqprotocolsforspatialorderinganalysis
AT swansonscott reproducibilityacrosssinglecellrnaseqprotocolsforspatialorderinganalysis
AT stewartron reproducibilityacrosssinglecellrnaseqprotocolsforspatialorderinganalysis
AT kendziorskichristina reproducibilityacrosssinglecellrnaseqprotocolsforspatialorderinganalysis
AT thomsonjamesa reproducibilityacrosssinglecellrnaseqprotocolsforspatialorderinganalysis
AT bacherrhonda reproducibilityacrosssinglecellrnaseqprotocolsforspatialorderinganalysis