Cargando…

Continuous pre- and post-transplant exposure to a disease-associated gut microbiome promotes hyper-acute graft-versus-host disease in wild-type mice

OBJECTIVE: The gut microbiome plays a key role in the development of acute graft-versus-host disease (GVHD) following allogeneic hematopoietic stem cell transplantation. Here we investigate the individual contribution of the pre- and post-transplant gut microbiome to acute GVHD using a well-studied...

Descripción completa

Detalles Bibliográficos
Autores principales: Bowerman, Kate L, Varelias, Antiopi, Lachner, Nancy, Kuns, Rachel D, Hill, Geoffrey R, Hugenholtz, Philip
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7524395/
https://www.ncbi.nlm.nih.gov/pubmed/31928131
http://dx.doi.org/10.1080/19490976.2019.1705729
Descripción
Sumario:OBJECTIVE: The gut microbiome plays a key role in the development of acute graft-versus-host disease (GVHD) following allogeneic hematopoietic stem cell transplantation. Here we investigate the individual contribution of the pre- and post-transplant gut microbiome to acute GVHD using a well-studied mouse model. DESIGN: Wild-type mice were cohoused with IL-17RA(–/ –) mice, susceptible to hyperacute GVHD, either pre- or post-transplant alone or continuously (i.e., pre- and post-transplant). Fecal samples were collected from both WT and IL-17RA(–/ –) mice pre- and post-cohousing and post-transplant and the microbiome analyzed using metagenomic sequencing. RESULTS: Priming wild-type mice via cohousing pre-transplant only is insufficient to accelerate GVHD, however, accelerated disease is observed in WT mice cohoused post-transplant only. When mice are cohoused continuously, the effect of priming and exacerbation is additive, resulting in a greater acceleration of disease in WT mice beyond that seen with cohousing post-transplant only. Metagenomic analysis of the microbiome revealed pre-transplant cohousing is associated with the transfer of specific species within two as-yet-uncultured genera of the bacterial family Muribaculaceae; CAG-485 and CAG-873. Post-transplant, we observed GVHD-associated blooms of Enterobacteriaceae members Escherichia coli and Enterobacter hormaechei subsp. steigerwaltii, and hyperacute GVHD gut microbiome distinct from that associated with delayed-onset disease (>10 days post-transplant). CONCLUSION: These results clarify the importance of the peri-transplant microbiome in the susceptibility to acute GVHD post-transplant and demonstrate the species-specific nature of this association.