Cargando…

Quantitative analysis of global protein stability rates in tissues

Protein degradation is an essential mechanism for maintaining proteostasis in response to internal and external perturbations. Disruption of this process is implicated in many human diseases. We present a new technique, QUAD (Quantification of Azidohomoalanine Degradation), to analyze the global deg...

Descripción completa

Detalles Bibliográficos
Autores principales: McClatchy, Daniel B., Martínez-Bartolomé, Salvador, Gao, Yu, Lavallée-Adam, Mathieu, Yates, John R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7524747/
https://www.ncbi.nlm.nih.gov/pubmed/32994440
http://dx.doi.org/10.1038/s41598-020-72410-y
Descripción
Sumario:Protein degradation is an essential mechanism for maintaining proteostasis in response to internal and external perturbations. Disruption of this process is implicated in many human diseases. We present a new technique, QUAD (Quantification of Azidohomoalanine Degradation), to analyze the global degradation rates in tissues using a non-canonical amino acid and mass spectrometry. QUAD analysis reveals that protein stability varied within tissues, but discernible trends in the data suggest that cellular environment is a major factor dictating stability. Within a tissue, different organelles and protein functions were enriched with different stability patterns. QUAD analysis demonstrated that protein stability is enhanced with age in the brain but not in the liver. Overall, QUAD allows the first global quantitation of protein stability rates in tissues, which will allow new insights and hypotheses in basic and translational research.