Cargando…

Beyond Toxin Transport: Novel Role of ABC Transporter for Enzymatic Machinery of Cereulide NRPS Assembly Line

Nonribosomal peptide synthetases (NRPSs) and polyketide synthetases (PKSs) play a pivotal role in the production of bioactive natural products, such as antibiotics and cytotoxins. Despite biomedical and pharmaceutical importance, the molecular mechanisms and architectures of these multimodular enzym...

Descripción completa

Detalles Bibliográficos
Autores principales: Gacek-Matthews, A., Chromiková, Z., Sulyok, M., Lücking, G., Barák, I., Ehling-Schulz, M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7527721/
https://www.ncbi.nlm.nih.gov/pubmed/32994334
http://dx.doi.org/10.1128/mBio.01577-20
Descripción
Sumario:Nonribosomal peptide synthetases (NRPSs) and polyketide synthetases (PKSs) play a pivotal role in the production of bioactive natural products, such as antibiotics and cytotoxins. Despite biomedical and pharmaceutical importance, the molecular mechanisms and architectures of these multimodular enzyme complexes are not fully understood. Here, we report on an ABC transporter that forms a vital part of the nonribosomal peptide biosynthetic machinery. Emetic Bacillus cereus produces the highly potent, mitochondrial active nonribosomal depsipeptide cereulide, synthesized by the NRPS Ces. The ces gene locus includes, next to the structural cesAB genes, a putative ABC transporter, designated cesCD. Our study demonstrates that tethering of CesAB synthetase to the cell membrane by CesCD is critical for peptide assembly. In vivo studies revealed that CesAB colocalizes with CesCD on the cell membrane, suggesting direct involvement of this ABC transporter in the biosynthesis of a nonribosomal peptide. Mutation of cesCD, disrupting the assembly of the CesCD complex, resulted in decreased interaction with CesAB and, as a consequence, negatively affected cereulide biosynthesis. Specific domains within CesAB synthetase interacting with CesC were identified. Furthermore, we demonstrated that the structurally similar BerAB transporter from Bacillus thuringiensis complements CesCD function in cereulide biosynthesis, suggesting that the direct involvement of ABC transporter in secondary metabolite biosynthesis could be a widespread mechanism. In summary, our study revealed a novel, noncanonical function for ABC transporter, which is essential for megaenzyme functionality of NRPS. The new insights into natural product biosynthesis gained may facilitate the discovery of new metabolites with bioactive potential.