Cargando…
Exosomal miR‐1255b‐5p targets human telomerase reverse transcriptase in colorectal cancer cells to suppress epithelial‐to‐mesenchymal transition
Cancer cells undergo epithelial‐to‐mesenchymal transition (EMT) in response to hypoxia. Exosomes produced in tumor microenvironments carry microRNAs (miRNAs) that affect proliferation, metastasis, and EMT. Hypoxic regulation of EMT is associated with telomerase content and stability, but the underly...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7530775/ https://www.ncbi.nlm.nih.gov/pubmed/32679610 http://dx.doi.org/10.1002/1878-0261.12765 |
_version_ | 1783589637217845248 |
---|---|
author | Zhang, Xue Bai, Jian Yin, Hang Long, Long Zheng, Zhewen Wang, Qingqing Chen, Fengxia Yu, Xiaoyan Zhou, Yunfeng |
author_facet | Zhang, Xue Bai, Jian Yin, Hang Long, Long Zheng, Zhewen Wang, Qingqing Chen, Fengxia Yu, Xiaoyan Zhou, Yunfeng |
author_sort | Zhang, Xue |
collection | PubMed |
description | Cancer cells undergo epithelial‐to‐mesenchymal transition (EMT) in response to hypoxia. Exosomes produced in tumor microenvironments carry microRNAs (miRNAs) that affect proliferation, metastasis, and EMT. Hypoxic regulation of EMT is associated with telomerase content and stability, but the underlying mechanisms remain unclear. We identified a targeting relationship between tumor‐suppressing miR‐1255b‐5p and human telomerase reverse transcriptase (hTERT) via clinical screening of serum samples in colorectal cancer (CRC) patients. EMT suppression via exosomal miR‐1255b‐5p delivery was investigated by assessing hTERT expression, Wnt/β‐catenin signaling, and telomerase activity. We revealed that hypoxia directly affected exosomal miR‐1255b‐5p content, the delivery of which between CRC cells significantly impacted cell invasion, EMT‐related protein expression, and telomerase stability. Specifically, miR‐1255b‐5p suppressed EMT by inhibiting Wnt/β‐catenin activation via hTERT inhibition. Hypoxia reduced exosomal miR‐1255b‐5p secretion by CRC cells, thereby increasing hTERT expression to enhance EMT and telomerase activity. In a mouse CRC model, hypoxic exosomes containing overexpressed miR‐1255b‐5p attenuated EMT, tumor progression, and liver metastasis. Our results suggest the antitumor role of miR‐1255b‐5p and its involvement in the regulation of hTERT‐mediated EMT. We propose that miRNA‐targeted regulation of telomerase is a promising therapeutic strategy for future CRC treatment. |
format | Online Article Text |
id | pubmed-7530775 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-75307752020-10-05 Exosomal miR‐1255b‐5p targets human telomerase reverse transcriptase in colorectal cancer cells to suppress epithelial‐to‐mesenchymal transition Zhang, Xue Bai, Jian Yin, Hang Long, Long Zheng, Zhewen Wang, Qingqing Chen, Fengxia Yu, Xiaoyan Zhou, Yunfeng Mol Oncol Research Articles Cancer cells undergo epithelial‐to‐mesenchymal transition (EMT) in response to hypoxia. Exosomes produced in tumor microenvironments carry microRNAs (miRNAs) that affect proliferation, metastasis, and EMT. Hypoxic regulation of EMT is associated with telomerase content and stability, but the underlying mechanisms remain unclear. We identified a targeting relationship between tumor‐suppressing miR‐1255b‐5p and human telomerase reverse transcriptase (hTERT) via clinical screening of serum samples in colorectal cancer (CRC) patients. EMT suppression via exosomal miR‐1255b‐5p delivery was investigated by assessing hTERT expression, Wnt/β‐catenin signaling, and telomerase activity. We revealed that hypoxia directly affected exosomal miR‐1255b‐5p content, the delivery of which between CRC cells significantly impacted cell invasion, EMT‐related protein expression, and telomerase stability. Specifically, miR‐1255b‐5p suppressed EMT by inhibiting Wnt/β‐catenin activation via hTERT inhibition. Hypoxia reduced exosomal miR‐1255b‐5p secretion by CRC cells, thereby increasing hTERT expression to enhance EMT and telomerase activity. In a mouse CRC model, hypoxic exosomes containing overexpressed miR‐1255b‐5p attenuated EMT, tumor progression, and liver metastasis. Our results suggest the antitumor role of miR‐1255b‐5p and its involvement in the regulation of hTERT‐mediated EMT. We propose that miRNA‐targeted regulation of telomerase is a promising therapeutic strategy for future CRC treatment. John Wiley and Sons Inc. 2020-08-19 2020-10 /pmc/articles/PMC7530775/ /pubmed/32679610 http://dx.doi.org/10.1002/1878-0261.12765 Text en © 2020 The Authors. Published by FEBS Press and John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Zhang, Xue Bai, Jian Yin, Hang Long, Long Zheng, Zhewen Wang, Qingqing Chen, Fengxia Yu, Xiaoyan Zhou, Yunfeng Exosomal miR‐1255b‐5p targets human telomerase reverse transcriptase in colorectal cancer cells to suppress epithelial‐to‐mesenchymal transition |
title | Exosomal miR‐1255b‐5p targets human telomerase reverse transcriptase in colorectal cancer cells to suppress epithelial‐to‐mesenchymal transition |
title_full | Exosomal miR‐1255b‐5p targets human telomerase reverse transcriptase in colorectal cancer cells to suppress epithelial‐to‐mesenchymal transition |
title_fullStr | Exosomal miR‐1255b‐5p targets human telomerase reverse transcriptase in colorectal cancer cells to suppress epithelial‐to‐mesenchymal transition |
title_full_unstemmed | Exosomal miR‐1255b‐5p targets human telomerase reverse transcriptase in colorectal cancer cells to suppress epithelial‐to‐mesenchymal transition |
title_short | Exosomal miR‐1255b‐5p targets human telomerase reverse transcriptase in colorectal cancer cells to suppress epithelial‐to‐mesenchymal transition |
title_sort | exosomal mir‐1255b‐5p targets human telomerase reverse transcriptase in colorectal cancer cells to suppress epithelial‐to‐mesenchymal transition |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7530775/ https://www.ncbi.nlm.nih.gov/pubmed/32679610 http://dx.doi.org/10.1002/1878-0261.12765 |
work_keys_str_mv | AT zhangxue exosomalmir1255b5ptargetshumantelomerasereversetranscriptaseincolorectalcancercellstosuppressepithelialtomesenchymaltransition AT baijian exosomalmir1255b5ptargetshumantelomerasereversetranscriptaseincolorectalcancercellstosuppressepithelialtomesenchymaltransition AT yinhang exosomalmir1255b5ptargetshumantelomerasereversetranscriptaseincolorectalcancercellstosuppressepithelialtomesenchymaltransition AT longlong exosomalmir1255b5ptargetshumantelomerasereversetranscriptaseincolorectalcancercellstosuppressepithelialtomesenchymaltransition AT zhengzhewen exosomalmir1255b5ptargetshumantelomerasereversetranscriptaseincolorectalcancercellstosuppressepithelialtomesenchymaltransition AT wangqingqing exosomalmir1255b5ptargetshumantelomerasereversetranscriptaseincolorectalcancercellstosuppressepithelialtomesenchymaltransition AT chenfengxia exosomalmir1255b5ptargetshumantelomerasereversetranscriptaseincolorectalcancercellstosuppressepithelialtomesenchymaltransition AT yuxiaoyan exosomalmir1255b5ptargetshumantelomerasereversetranscriptaseincolorectalcancercellstosuppressepithelialtomesenchymaltransition AT zhouyunfeng exosomalmir1255b5ptargetshumantelomerasereversetranscriptaseincolorectalcancercellstosuppressepithelialtomesenchymaltransition |