Cargando…
Interleukin-6 trans-signaling is a candidate mechanism to drive progression of human DCCs during clinical latency
Although thousands of breast cancer cells disseminate and home to bone marrow until primary surgery, usually less than a handful will succeed in establishing manifest metastases months to years later. To identify signals that support survival or outgrowth in patients, we profile rare bone marrow-der...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7536220/ https://www.ncbi.nlm.nih.gov/pubmed/33020483 http://dx.doi.org/10.1038/s41467-020-18701-4 |
_version_ | 1783590518558556160 |
---|---|
author | Werner-Klein, Melanie Grujovic, Ana Irlbeck, Christoph Obradović, Milan Hoffmann, Martin Koerkel-Qu, Huiqin Lu, Xin Treitschke, Steffi Köstler, Cäcilia Botteron, Catherine Weidele, Kathrin Werno, Christian Polzer, Bernhard Kirsch, Stefan Gužvić, Miodrag Warfsmann, Jens Honarnejad, Kamran Czyz, Zbigniew Feliciello, Giancarlo Blochberger, Isabell Grunewald, Sandra Schneider, Elisabeth Haunschild, Gundula Patwary, Nina Guetter, Severin Huber, Sandra Rack, Brigitte Harbeck, Nadia Buchholz, Stefan Rümmele, Petra Heine, Norbert Rose-John, Stefan Klein, Christoph A. |
author_facet | Werner-Klein, Melanie Grujovic, Ana Irlbeck, Christoph Obradović, Milan Hoffmann, Martin Koerkel-Qu, Huiqin Lu, Xin Treitschke, Steffi Köstler, Cäcilia Botteron, Catherine Weidele, Kathrin Werno, Christian Polzer, Bernhard Kirsch, Stefan Gužvić, Miodrag Warfsmann, Jens Honarnejad, Kamran Czyz, Zbigniew Feliciello, Giancarlo Blochberger, Isabell Grunewald, Sandra Schneider, Elisabeth Haunschild, Gundula Patwary, Nina Guetter, Severin Huber, Sandra Rack, Brigitte Harbeck, Nadia Buchholz, Stefan Rümmele, Petra Heine, Norbert Rose-John, Stefan Klein, Christoph A. |
author_sort | Werner-Klein, Melanie |
collection | PubMed |
description | Although thousands of breast cancer cells disseminate and home to bone marrow until primary surgery, usually less than a handful will succeed in establishing manifest metastases months to years later. To identify signals that support survival or outgrowth in patients, we profile rare bone marrow-derived disseminated cancer cells (DCCs) long before manifestation of metastasis and identify IL6/PI3K-signaling as candidate pathway for DCC activation. Surprisingly, and similar to mammary epithelial cells, DCCs lack membranous IL6 receptor expression and mechanistic dissection reveals IL6 trans-signaling to regulate a stem-like state of mammary epithelial cells via gp130. Responsiveness to IL6 trans-signals is found to be niche-dependent as bone marrow stromal and endosteal cells down-regulate gp130 in premalignant mammary epithelial cells as opposed to vascular niche cells. PIK3CA activation renders cells independent from IL6 trans-signaling. Consistent with a bottleneck function of microenvironmental DCC control, we find PIK3CA mutations highly associated with late-stage metastatic cells while being extremely rare in early DCCs. Our data suggest that the initial steps of metastasis formation are often not cancer cell-autonomous, but also depend on microenvironmental signals. |
format | Online Article Text |
id | pubmed-7536220 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-75362202020-10-19 Interleukin-6 trans-signaling is a candidate mechanism to drive progression of human DCCs during clinical latency Werner-Klein, Melanie Grujovic, Ana Irlbeck, Christoph Obradović, Milan Hoffmann, Martin Koerkel-Qu, Huiqin Lu, Xin Treitschke, Steffi Köstler, Cäcilia Botteron, Catherine Weidele, Kathrin Werno, Christian Polzer, Bernhard Kirsch, Stefan Gužvić, Miodrag Warfsmann, Jens Honarnejad, Kamran Czyz, Zbigniew Feliciello, Giancarlo Blochberger, Isabell Grunewald, Sandra Schneider, Elisabeth Haunschild, Gundula Patwary, Nina Guetter, Severin Huber, Sandra Rack, Brigitte Harbeck, Nadia Buchholz, Stefan Rümmele, Petra Heine, Norbert Rose-John, Stefan Klein, Christoph A. Nat Commun Article Although thousands of breast cancer cells disseminate and home to bone marrow until primary surgery, usually less than a handful will succeed in establishing manifest metastases months to years later. To identify signals that support survival or outgrowth in patients, we profile rare bone marrow-derived disseminated cancer cells (DCCs) long before manifestation of metastasis and identify IL6/PI3K-signaling as candidate pathway for DCC activation. Surprisingly, and similar to mammary epithelial cells, DCCs lack membranous IL6 receptor expression and mechanistic dissection reveals IL6 trans-signaling to regulate a stem-like state of mammary epithelial cells via gp130. Responsiveness to IL6 trans-signals is found to be niche-dependent as bone marrow stromal and endosteal cells down-regulate gp130 in premalignant mammary epithelial cells as opposed to vascular niche cells. PIK3CA activation renders cells independent from IL6 trans-signaling. Consistent with a bottleneck function of microenvironmental DCC control, we find PIK3CA mutations highly associated with late-stage metastatic cells while being extremely rare in early DCCs. Our data suggest that the initial steps of metastasis formation are often not cancer cell-autonomous, but also depend on microenvironmental signals. Nature Publishing Group UK 2020-10-05 /pmc/articles/PMC7536220/ /pubmed/33020483 http://dx.doi.org/10.1038/s41467-020-18701-4 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Werner-Klein, Melanie Grujovic, Ana Irlbeck, Christoph Obradović, Milan Hoffmann, Martin Koerkel-Qu, Huiqin Lu, Xin Treitschke, Steffi Köstler, Cäcilia Botteron, Catherine Weidele, Kathrin Werno, Christian Polzer, Bernhard Kirsch, Stefan Gužvić, Miodrag Warfsmann, Jens Honarnejad, Kamran Czyz, Zbigniew Feliciello, Giancarlo Blochberger, Isabell Grunewald, Sandra Schneider, Elisabeth Haunschild, Gundula Patwary, Nina Guetter, Severin Huber, Sandra Rack, Brigitte Harbeck, Nadia Buchholz, Stefan Rümmele, Petra Heine, Norbert Rose-John, Stefan Klein, Christoph A. Interleukin-6 trans-signaling is a candidate mechanism to drive progression of human DCCs during clinical latency |
title | Interleukin-6 trans-signaling is a candidate mechanism to drive progression of human DCCs during clinical latency |
title_full | Interleukin-6 trans-signaling is a candidate mechanism to drive progression of human DCCs during clinical latency |
title_fullStr | Interleukin-6 trans-signaling is a candidate mechanism to drive progression of human DCCs during clinical latency |
title_full_unstemmed | Interleukin-6 trans-signaling is a candidate mechanism to drive progression of human DCCs during clinical latency |
title_short | Interleukin-6 trans-signaling is a candidate mechanism to drive progression of human DCCs during clinical latency |
title_sort | interleukin-6 trans-signaling is a candidate mechanism to drive progression of human dccs during clinical latency |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7536220/ https://www.ncbi.nlm.nih.gov/pubmed/33020483 http://dx.doi.org/10.1038/s41467-020-18701-4 |
work_keys_str_mv | AT wernerkleinmelanie interleukin6transsignalingisacandidatemechanismtodriveprogressionofhumandccsduringclinicallatency AT grujovicana interleukin6transsignalingisacandidatemechanismtodriveprogressionofhumandccsduringclinicallatency AT irlbeckchristoph interleukin6transsignalingisacandidatemechanismtodriveprogressionofhumandccsduringclinicallatency AT obradovicmilan interleukin6transsignalingisacandidatemechanismtodriveprogressionofhumandccsduringclinicallatency AT hoffmannmartin interleukin6transsignalingisacandidatemechanismtodriveprogressionofhumandccsduringclinicallatency AT koerkelquhuiqin interleukin6transsignalingisacandidatemechanismtodriveprogressionofhumandccsduringclinicallatency AT luxin interleukin6transsignalingisacandidatemechanismtodriveprogressionofhumandccsduringclinicallatency AT treitschkesteffi interleukin6transsignalingisacandidatemechanismtodriveprogressionofhumandccsduringclinicallatency AT kostlercacilia interleukin6transsignalingisacandidatemechanismtodriveprogressionofhumandccsduringclinicallatency AT botteroncatherine interleukin6transsignalingisacandidatemechanismtodriveprogressionofhumandccsduringclinicallatency AT weidelekathrin interleukin6transsignalingisacandidatemechanismtodriveprogressionofhumandccsduringclinicallatency AT wernochristian interleukin6transsignalingisacandidatemechanismtodriveprogressionofhumandccsduringclinicallatency AT polzerbernhard interleukin6transsignalingisacandidatemechanismtodriveprogressionofhumandccsduringclinicallatency AT kirschstefan interleukin6transsignalingisacandidatemechanismtodriveprogressionofhumandccsduringclinicallatency AT guzvicmiodrag interleukin6transsignalingisacandidatemechanismtodriveprogressionofhumandccsduringclinicallatency AT warfsmannjens interleukin6transsignalingisacandidatemechanismtodriveprogressionofhumandccsduringclinicallatency AT honarnejadkamran interleukin6transsignalingisacandidatemechanismtodriveprogressionofhumandccsduringclinicallatency AT czyzzbigniew interleukin6transsignalingisacandidatemechanismtodriveprogressionofhumandccsduringclinicallatency AT feliciellogiancarlo interleukin6transsignalingisacandidatemechanismtodriveprogressionofhumandccsduringclinicallatency AT blochbergerisabell interleukin6transsignalingisacandidatemechanismtodriveprogressionofhumandccsduringclinicallatency AT grunewaldsandra interleukin6transsignalingisacandidatemechanismtodriveprogressionofhumandccsduringclinicallatency AT schneiderelisabeth interleukin6transsignalingisacandidatemechanismtodriveprogressionofhumandccsduringclinicallatency AT haunschildgundula interleukin6transsignalingisacandidatemechanismtodriveprogressionofhumandccsduringclinicallatency AT patwarynina interleukin6transsignalingisacandidatemechanismtodriveprogressionofhumandccsduringclinicallatency AT guetterseverin interleukin6transsignalingisacandidatemechanismtodriveprogressionofhumandccsduringclinicallatency AT hubersandra interleukin6transsignalingisacandidatemechanismtodriveprogressionofhumandccsduringclinicallatency AT rackbrigitte interleukin6transsignalingisacandidatemechanismtodriveprogressionofhumandccsduringclinicallatency AT harbecknadia interleukin6transsignalingisacandidatemechanismtodriveprogressionofhumandccsduringclinicallatency AT buchholzstefan interleukin6transsignalingisacandidatemechanismtodriveprogressionofhumandccsduringclinicallatency AT rummelepetra interleukin6transsignalingisacandidatemechanismtodriveprogressionofhumandccsduringclinicallatency AT heinenorbert interleukin6transsignalingisacandidatemechanismtodriveprogressionofhumandccsduringclinicallatency AT rosejohnstefan interleukin6transsignalingisacandidatemechanismtodriveprogressionofhumandccsduringclinicallatency AT kleinchristopha interleukin6transsignalingisacandidatemechanismtodriveprogressionofhumandccsduringclinicallatency |