Cargando…
High-sensitivity tunneling magneto-resistive micro-gyroscope with immunity to external magnetic interference
Micro-electro-mechanical system (MEMS) gyroscopes have numerous potential applications including guidance, robotics, tactical-grade navigation, and automotive applications fields. The methods with ability of the weak Coriolis force detection are critical for MEMS gyroscopes. In this paper, we presen...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7536292/ https://www.ncbi.nlm.nih.gov/pubmed/33020557 http://dx.doi.org/10.1038/s41598-020-73369-6 |
Sumario: | Micro-electro-mechanical system (MEMS) gyroscopes have numerous potential applications including guidance, robotics, tactical-grade navigation, and automotive applications fields. The methods with ability of the weak Coriolis force detection are critical for MEMS gyroscopes. In this paper, we presented a design of MEMS gyroscope based on the tunneling magneto-resistance effect with higher detection sensitivity. Of all these designed parameters, the structural, magnetic field, and magneto-resistance sensitivity values reach to 21.6 nm/°/s, 0.0023 Oe/nm, and 29.5 mV/Oe, thus, with total sensitivity of 1.47 mV/°/s. Multi-bridge circuit method is employed to suppress external magnetic interference and avoid the integration error of the TMR devices effectively. The proposed tunneling magneto-resistive micro-gyroscope shows a possibility to make an inertial grade MEMS gyroscope in the future. |
---|