Cargando…
Inferring Gene-by-Environment Interactions with a Bayesian Whole-Genome Regression Model
The contribution of gene-by-environment (GxE) interactions for many human traits and diseases is poorly characterized. We propose a Bayesian whole-genome regression model for joint modeling of main genetic effects and GxE interactions in large-scale datasets, such as the UK Biobank, where many envir...
Autores principales: | Kerin, Matthew, Marchini, Jonathan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7536582/ https://www.ncbi.nlm.nih.gov/pubmed/32888427 http://dx.doi.org/10.1016/j.ajhg.2020.08.009 |
Ejemplares similares
-
A non-linear regression method for estimation of gene–environment heritability
por: Kerin, Matthew, et al.
Publicado: (2020) -
Bayesian Multimodel Inference for Geostatistical Regression Models
por: Johnson, Devin S., et al.
Publicado: (2011) -
Fast parallelized sampling of Bayesian regression models for whole-genome prediction
por: Zhao, Tianjing, et al.
Publicado: (2020) -
Bayesian hierarchical modelling for inferring genetic interactions in yeast
por: Heydari, Jonathan, et al.
Publicado: (2015) -
Inference of Gene Regulatory Networks Using Bayesian Nonparametric Regression and Topology Information
por: Fan, Yue, et al.
Publicado: (2017)