Cargando…

Pathways for nicotinic receptor desensitization

Nicotinic acetylcholine receptors (AChRs) are ligand-gated ion channels that generate transient currents by binding agonists and switching rapidly between closed- and open-channel conformations. Upon sustained exposure to ACh, the cell response diminishes slowly because of desensitization, a process...

Descripción completa

Detalles Bibliográficos
Autor principal: Auerbach, Anthony
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Rockefeller University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7537344/
https://www.ncbi.nlm.nih.gov/pubmed/32910188
http://dx.doi.org/10.1085/jgp.202012639
Descripción
Sumario:Nicotinic acetylcholine receptors (AChRs) are ligand-gated ion channels that generate transient currents by binding agonists and switching rapidly between closed- and open-channel conformations. Upon sustained exposure to ACh, the cell response diminishes slowly because of desensitization, a process that shuts the channel even with agonists still bound. In liganded receptors, the main desensitization pathway is from the open-channel conformation, but after agonists dissociate the main recovery pathway is to the closed-channel conformation. In this Viewpoint, I discuss two mechanisms that can explain the selection of different pathways, a question that has puzzled the community for 60 yr. The first is based on a discrete-state model (the “prism”), in which closed, open, and desensitized conformational states interconnect directly. This model predicts that 5% of unliganded AChRs are desensitized. Different pathways are taken with versus without agonists because ligands have different energy properties (φ values) at the transition states of the desensitization and recovery reactions. The second is a potential energy surface model (the “monkey saddle”), in which the states connect indirectly at a shared transition state region. Different pathways are taken because agonists shift the position of the gating transition state relative to the point where gating and desensitization conformational trajectories intersect. Understanding desensitization pathways appears to be a problem of kinetics rather than of thermodynamics. Other aspects of the two mechanisms are considered, as are experiments that may someday distinguish them.