Cargando…
A single nucleotide substitution in TaHKT1;5‐D controls shoot Na(+) accumulation in bread wheat
Improving salinity tolerance in the most widely cultivated cereal, bread wheat (Triticum aestivum L.), is essential to increase grain yields on saline agricultural lands. A Portuguese landrace, Mocho de Espiga Branca accumulates up to sixfold greater leaf and sheath sodium (Na(+)) than two Australia...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Ltd.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7540593/ https://www.ncbi.nlm.nih.gov/pubmed/32652543 http://dx.doi.org/10.1111/pce.13841 |
_version_ | 1783591244445777920 |
---|---|
author | Borjigin, Chana Schilling, Rhiannon K. Bose, Jayakumar Hrmova, Maria Qiu, Jiaen Wege, Stefanie Situmorang, Apriadi Byrt, Caitlin Brien, Chris Berger, Bettina Gilliham, Matthew Pearson, Allison S. Roy, Stuart J. |
author_facet | Borjigin, Chana Schilling, Rhiannon K. Bose, Jayakumar Hrmova, Maria Qiu, Jiaen Wege, Stefanie Situmorang, Apriadi Byrt, Caitlin Brien, Chris Berger, Bettina Gilliham, Matthew Pearson, Allison S. Roy, Stuart J. |
author_sort | Borjigin, Chana |
collection | PubMed |
description | Improving salinity tolerance in the most widely cultivated cereal, bread wheat (Triticum aestivum L.), is essential to increase grain yields on saline agricultural lands. A Portuguese landrace, Mocho de Espiga Branca accumulates up to sixfold greater leaf and sheath sodium (Na(+)) than two Australian cultivars, Gladius and Scout, under salt stress in hydroponics. Despite high leaf and sheath Na(+) concentrations, Mocho de Espiga Branca maintained similar salinity tolerance compared to Gladius and Scout. A naturally occurring single nucleotide substitution was identified in the gene encoding a major Na(+) transporter TaHKT1;5‐D in Mocho de Espiga Branca, which resulted in a L190P amino acid residue variation. This variant prevents Mocho de Espiga Branca from retrieving Na(+) from the root xylem leading to a high shoot Na(+) concentration. The identification of the tissue‐tolerant Mocho de Espiga Branca will accelerate the development of more elite salt‐tolerant bread wheat cultivars. |
format | Online Article Text |
id | pubmed-7540593 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley & Sons, Ltd. |
record_format | MEDLINE/PubMed |
spelling | pubmed-75405932020-10-15 A single nucleotide substitution in TaHKT1;5‐D controls shoot Na(+) accumulation in bread wheat Borjigin, Chana Schilling, Rhiannon K. Bose, Jayakumar Hrmova, Maria Qiu, Jiaen Wege, Stefanie Situmorang, Apriadi Byrt, Caitlin Brien, Chris Berger, Bettina Gilliham, Matthew Pearson, Allison S. Roy, Stuart J. Plant Cell Environ Original Articles Improving salinity tolerance in the most widely cultivated cereal, bread wheat (Triticum aestivum L.), is essential to increase grain yields on saline agricultural lands. A Portuguese landrace, Mocho de Espiga Branca accumulates up to sixfold greater leaf and sheath sodium (Na(+)) than two Australian cultivars, Gladius and Scout, under salt stress in hydroponics. Despite high leaf and sheath Na(+) concentrations, Mocho de Espiga Branca maintained similar salinity tolerance compared to Gladius and Scout. A naturally occurring single nucleotide substitution was identified in the gene encoding a major Na(+) transporter TaHKT1;5‐D in Mocho de Espiga Branca, which resulted in a L190P amino acid residue variation. This variant prevents Mocho de Espiga Branca from retrieving Na(+) from the root xylem leading to a high shoot Na(+) concentration. The identification of the tissue‐tolerant Mocho de Espiga Branca will accelerate the development of more elite salt‐tolerant bread wheat cultivars. John Wiley & Sons, Ltd. 2020-07-22 2020-09 /pmc/articles/PMC7540593/ /pubmed/32652543 http://dx.doi.org/10.1111/pce.13841 Text en © 2020 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Articles Borjigin, Chana Schilling, Rhiannon K. Bose, Jayakumar Hrmova, Maria Qiu, Jiaen Wege, Stefanie Situmorang, Apriadi Byrt, Caitlin Brien, Chris Berger, Bettina Gilliham, Matthew Pearson, Allison S. Roy, Stuart J. A single nucleotide substitution in TaHKT1;5‐D controls shoot Na(+) accumulation in bread wheat |
title | A single nucleotide substitution in TaHKT1;5‐D controls shoot Na(+) accumulation in bread wheat |
title_full | A single nucleotide substitution in TaHKT1;5‐D controls shoot Na(+) accumulation in bread wheat |
title_fullStr | A single nucleotide substitution in TaHKT1;5‐D controls shoot Na(+) accumulation in bread wheat |
title_full_unstemmed | A single nucleotide substitution in TaHKT1;5‐D controls shoot Na(+) accumulation in bread wheat |
title_short | A single nucleotide substitution in TaHKT1;5‐D controls shoot Na(+) accumulation in bread wheat |
title_sort | single nucleotide substitution in tahkt1;5‐d controls shoot na(+) accumulation in bread wheat |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7540593/ https://www.ncbi.nlm.nih.gov/pubmed/32652543 http://dx.doi.org/10.1111/pce.13841 |
work_keys_str_mv | AT borjiginchana asinglenucleotidesubstitutionintahkt15dcontrolsshootnaaccumulationinbreadwheat AT schillingrhiannonk asinglenucleotidesubstitutionintahkt15dcontrolsshootnaaccumulationinbreadwheat AT bosejayakumar asinglenucleotidesubstitutionintahkt15dcontrolsshootnaaccumulationinbreadwheat AT hrmovamaria asinglenucleotidesubstitutionintahkt15dcontrolsshootnaaccumulationinbreadwheat AT qiujiaen asinglenucleotidesubstitutionintahkt15dcontrolsshootnaaccumulationinbreadwheat AT wegestefanie asinglenucleotidesubstitutionintahkt15dcontrolsshootnaaccumulationinbreadwheat AT situmorangapriadi asinglenucleotidesubstitutionintahkt15dcontrolsshootnaaccumulationinbreadwheat AT byrtcaitlin asinglenucleotidesubstitutionintahkt15dcontrolsshootnaaccumulationinbreadwheat AT brienchris asinglenucleotidesubstitutionintahkt15dcontrolsshootnaaccumulationinbreadwheat AT bergerbettina asinglenucleotidesubstitutionintahkt15dcontrolsshootnaaccumulationinbreadwheat AT gillihammatthew asinglenucleotidesubstitutionintahkt15dcontrolsshootnaaccumulationinbreadwheat AT pearsonallisons asinglenucleotidesubstitutionintahkt15dcontrolsshootnaaccumulationinbreadwheat AT roystuartj asinglenucleotidesubstitutionintahkt15dcontrolsshootnaaccumulationinbreadwheat AT borjiginchana singlenucleotidesubstitutionintahkt15dcontrolsshootnaaccumulationinbreadwheat AT schillingrhiannonk singlenucleotidesubstitutionintahkt15dcontrolsshootnaaccumulationinbreadwheat AT bosejayakumar singlenucleotidesubstitutionintahkt15dcontrolsshootnaaccumulationinbreadwheat AT hrmovamaria singlenucleotidesubstitutionintahkt15dcontrolsshootnaaccumulationinbreadwheat AT qiujiaen singlenucleotidesubstitutionintahkt15dcontrolsshootnaaccumulationinbreadwheat AT wegestefanie singlenucleotidesubstitutionintahkt15dcontrolsshootnaaccumulationinbreadwheat AT situmorangapriadi singlenucleotidesubstitutionintahkt15dcontrolsshootnaaccumulationinbreadwheat AT byrtcaitlin singlenucleotidesubstitutionintahkt15dcontrolsshootnaaccumulationinbreadwheat AT brienchris singlenucleotidesubstitutionintahkt15dcontrolsshootnaaccumulationinbreadwheat AT bergerbettina singlenucleotidesubstitutionintahkt15dcontrolsshootnaaccumulationinbreadwheat AT gillihammatthew singlenucleotidesubstitutionintahkt15dcontrolsshootnaaccumulationinbreadwheat AT pearsonallisons singlenucleotidesubstitutionintahkt15dcontrolsshootnaaccumulationinbreadwheat AT roystuartj singlenucleotidesubstitutionintahkt15dcontrolsshootnaaccumulationinbreadwheat |