Cargando…

A single nucleotide substitution in TaHKT1;5‐D controls shoot Na(+) accumulation in bread wheat

Improving salinity tolerance in the most widely cultivated cereal, bread wheat (Triticum aestivum L.), is essential to increase grain yields on saline agricultural lands. A Portuguese landrace, Mocho de Espiga Branca accumulates up to sixfold greater leaf and sheath sodium (Na(+)) than two Australia...

Descripción completa

Detalles Bibliográficos
Autores principales: Borjigin, Chana, Schilling, Rhiannon K., Bose, Jayakumar, Hrmova, Maria, Qiu, Jiaen, Wege, Stefanie, Situmorang, Apriadi, Byrt, Caitlin, Brien, Chris, Berger, Bettina, Gilliham, Matthew, Pearson, Allison S., Roy, Stuart J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley & Sons, Ltd. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7540593/
https://www.ncbi.nlm.nih.gov/pubmed/32652543
http://dx.doi.org/10.1111/pce.13841
_version_ 1783591244445777920
author Borjigin, Chana
Schilling, Rhiannon K.
Bose, Jayakumar
Hrmova, Maria
Qiu, Jiaen
Wege, Stefanie
Situmorang, Apriadi
Byrt, Caitlin
Brien, Chris
Berger, Bettina
Gilliham, Matthew
Pearson, Allison S.
Roy, Stuart J.
author_facet Borjigin, Chana
Schilling, Rhiannon K.
Bose, Jayakumar
Hrmova, Maria
Qiu, Jiaen
Wege, Stefanie
Situmorang, Apriadi
Byrt, Caitlin
Brien, Chris
Berger, Bettina
Gilliham, Matthew
Pearson, Allison S.
Roy, Stuart J.
author_sort Borjigin, Chana
collection PubMed
description Improving salinity tolerance in the most widely cultivated cereal, bread wheat (Triticum aestivum L.), is essential to increase grain yields on saline agricultural lands. A Portuguese landrace, Mocho de Espiga Branca accumulates up to sixfold greater leaf and sheath sodium (Na(+)) than two Australian cultivars, Gladius and Scout, under salt stress in hydroponics. Despite high leaf and sheath Na(+) concentrations, Mocho de Espiga Branca maintained similar salinity tolerance compared to Gladius and Scout. A naturally occurring single nucleotide substitution was identified in the gene encoding a major Na(+) transporter TaHKT1;5‐D in Mocho de Espiga Branca, which resulted in a L190P amino acid residue variation. This variant prevents Mocho de Espiga Branca from retrieving Na(+) from the root xylem leading to a high shoot Na(+) concentration. The identification of the tissue‐tolerant Mocho de Espiga Branca will accelerate the development of more elite salt‐tolerant bread wheat cultivars.
format Online
Article
Text
id pubmed-7540593
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher John Wiley & Sons, Ltd.
record_format MEDLINE/PubMed
spelling pubmed-75405932020-10-15 A single nucleotide substitution in TaHKT1;5‐D controls shoot Na(+) accumulation in bread wheat Borjigin, Chana Schilling, Rhiannon K. Bose, Jayakumar Hrmova, Maria Qiu, Jiaen Wege, Stefanie Situmorang, Apriadi Byrt, Caitlin Brien, Chris Berger, Bettina Gilliham, Matthew Pearson, Allison S. Roy, Stuart J. Plant Cell Environ Original Articles Improving salinity tolerance in the most widely cultivated cereal, bread wheat (Triticum aestivum L.), is essential to increase grain yields on saline agricultural lands. A Portuguese landrace, Mocho de Espiga Branca accumulates up to sixfold greater leaf and sheath sodium (Na(+)) than two Australian cultivars, Gladius and Scout, under salt stress in hydroponics. Despite high leaf and sheath Na(+) concentrations, Mocho de Espiga Branca maintained similar salinity tolerance compared to Gladius and Scout. A naturally occurring single nucleotide substitution was identified in the gene encoding a major Na(+) transporter TaHKT1;5‐D in Mocho de Espiga Branca, which resulted in a L190P amino acid residue variation. This variant prevents Mocho de Espiga Branca from retrieving Na(+) from the root xylem leading to a high shoot Na(+) concentration. The identification of the tissue‐tolerant Mocho de Espiga Branca will accelerate the development of more elite salt‐tolerant bread wheat cultivars. John Wiley & Sons, Ltd. 2020-07-22 2020-09 /pmc/articles/PMC7540593/ /pubmed/32652543 http://dx.doi.org/10.1111/pce.13841 Text en © 2020 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Articles
Borjigin, Chana
Schilling, Rhiannon K.
Bose, Jayakumar
Hrmova, Maria
Qiu, Jiaen
Wege, Stefanie
Situmorang, Apriadi
Byrt, Caitlin
Brien, Chris
Berger, Bettina
Gilliham, Matthew
Pearson, Allison S.
Roy, Stuart J.
A single nucleotide substitution in TaHKT1;5‐D controls shoot Na(+) accumulation in bread wheat
title A single nucleotide substitution in TaHKT1;5‐D controls shoot Na(+) accumulation in bread wheat
title_full A single nucleotide substitution in TaHKT1;5‐D controls shoot Na(+) accumulation in bread wheat
title_fullStr A single nucleotide substitution in TaHKT1;5‐D controls shoot Na(+) accumulation in bread wheat
title_full_unstemmed A single nucleotide substitution in TaHKT1;5‐D controls shoot Na(+) accumulation in bread wheat
title_short A single nucleotide substitution in TaHKT1;5‐D controls shoot Na(+) accumulation in bread wheat
title_sort single nucleotide substitution in tahkt1;5‐d controls shoot na(+) accumulation in bread wheat
topic Original Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7540593/
https://www.ncbi.nlm.nih.gov/pubmed/32652543
http://dx.doi.org/10.1111/pce.13841
work_keys_str_mv AT borjiginchana asinglenucleotidesubstitutionintahkt15dcontrolsshootnaaccumulationinbreadwheat
AT schillingrhiannonk asinglenucleotidesubstitutionintahkt15dcontrolsshootnaaccumulationinbreadwheat
AT bosejayakumar asinglenucleotidesubstitutionintahkt15dcontrolsshootnaaccumulationinbreadwheat
AT hrmovamaria asinglenucleotidesubstitutionintahkt15dcontrolsshootnaaccumulationinbreadwheat
AT qiujiaen asinglenucleotidesubstitutionintahkt15dcontrolsshootnaaccumulationinbreadwheat
AT wegestefanie asinglenucleotidesubstitutionintahkt15dcontrolsshootnaaccumulationinbreadwheat
AT situmorangapriadi asinglenucleotidesubstitutionintahkt15dcontrolsshootnaaccumulationinbreadwheat
AT byrtcaitlin asinglenucleotidesubstitutionintahkt15dcontrolsshootnaaccumulationinbreadwheat
AT brienchris asinglenucleotidesubstitutionintahkt15dcontrolsshootnaaccumulationinbreadwheat
AT bergerbettina asinglenucleotidesubstitutionintahkt15dcontrolsshootnaaccumulationinbreadwheat
AT gillihammatthew asinglenucleotidesubstitutionintahkt15dcontrolsshootnaaccumulationinbreadwheat
AT pearsonallisons asinglenucleotidesubstitutionintahkt15dcontrolsshootnaaccumulationinbreadwheat
AT roystuartj asinglenucleotidesubstitutionintahkt15dcontrolsshootnaaccumulationinbreadwheat
AT borjiginchana singlenucleotidesubstitutionintahkt15dcontrolsshootnaaccumulationinbreadwheat
AT schillingrhiannonk singlenucleotidesubstitutionintahkt15dcontrolsshootnaaccumulationinbreadwheat
AT bosejayakumar singlenucleotidesubstitutionintahkt15dcontrolsshootnaaccumulationinbreadwheat
AT hrmovamaria singlenucleotidesubstitutionintahkt15dcontrolsshootnaaccumulationinbreadwheat
AT qiujiaen singlenucleotidesubstitutionintahkt15dcontrolsshootnaaccumulationinbreadwheat
AT wegestefanie singlenucleotidesubstitutionintahkt15dcontrolsshootnaaccumulationinbreadwheat
AT situmorangapriadi singlenucleotidesubstitutionintahkt15dcontrolsshootnaaccumulationinbreadwheat
AT byrtcaitlin singlenucleotidesubstitutionintahkt15dcontrolsshootnaaccumulationinbreadwheat
AT brienchris singlenucleotidesubstitutionintahkt15dcontrolsshootnaaccumulationinbreadwheat
AT bergerbettina singlenucleotidesubstitutionintahkt15dcontrolsshootnaaccumulationinbreadwheat
AT gillihammatthew singlenucleotidesubstitutionintahkt15dcontrolsshootnaaccumulationinbreadwheat
AT pearsonallisons singlenucleotidesubstitutionintahkt15dcontrolsshootnaaccumulationinbreadwheat
AT roystuartj singlenucleotidesubstitutionintahkt15dcontrolsshootnaaccumulationinbreadwheat