Cargando…
Transcription imparts architecture, function, and logic to enhancer units
Distal enhancers play pivotal roles in development and disease yet remain one of the least understood regulatory elements. We used massively parallel reporter assays to perform functional comparisons of two leading enhancer models and find that gene-distal transcription start sites (TSSs) are robust...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7541647/ https://www.ncbi.nlm.nih.gov/pubmed/32958950 http://dx.doi.org/10.1038/s41588-020-0686-2 |
_version_ | 1783591416653414400 |
---|---|
author | Tippens, Nathaniel D. Liang, Jin King-Yung Leung, Alden Wierbowski, Shayne D. Ozer, Abdullah Booth, James G. Lis, John T. Yu, Haiyuan |
author_facet | Tippens, Nathaniel D. Liang, Jin King-Yung Leung, Alden Wierbowski, Shayne D. Ozer, Abdullah Booth, James G. Lis, John T. Yu, Haiyuan |
author_sort | Tippens, Nathaniel D. |
collection | PubMed |
description | Distal enhancers play pivotal roles in development and disease yet remain one of the least understood regulatory elements. We used massively parallel reporter assays to perform functional comparisons of two leading enhancer models and find that gene-distal transcription start sites (TSSs) are robust predictors of active enhancers with higher resolution than histone modifications. We show active enhancer units are precisely delineated by active TSSs, validate that these boundaries are sufficient for capturing enhancer function, and confirm that core promoter sequences are necessary for this activity. We assay adjacent enhancers and find that their joint activity is often driven by the stronger unit within the cluster. Finally, we validate these results through functional dissection of a distal enhancer cluster using CRISPR-Cas9 deletions. In summary, definition of high-resolution enhancer boundaries enables deconvolution of complex regulatory loci into modular units. |
format | Online Article Text |
id | pubmed-7541647 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
record_format | MEDLINE/PubMed |
spelling | pubmed-75416472021-03-21 Transcription imparts architecture, function, and logic to enhancer units Tippens, Nathaniel D. Liang, Jin King-Yung Leung, Alden Wierbowski, Shayne D. Ozer, Abdullah Booth, James G. Lis, John T. Yu, Haiyuan Nat Genet Article Distal enhancers play pivotal roles in development and disease yet remain one of the least understood regulatory elements. We used massively parallel reporter assays to perform functional comparisons of two leading enhancer models and find that gene-distal transcription start sites (TSSs) are robust predictors of active enhancers with higher resolution than histone modifications. We show active enhancer units are precisely delineated by active TSSs, validate that these boundaries are sufficient for capturing enhancer function, and confirm that core promoter sequences are necessary for this activity. We assay adjacent enhancers and find that their joint activity is often driven by the stronger unit within the cluster. Finally, we validate these results through functional dissection of a distal enhancer cluster using CRISPR-Cas9 deletions. In summary, definition of high-resolution enhancer boundaries enables deconvolution of complex regulatory loci into modular units. 2020-09-21 2020-10 /pmc/articles/PMC7541647/ /pubmed/32958950 http://dx.doi.org/10.1038/s41588-020-0686-2 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Tippens, Nathaniel D. Liang, Jin King-Yung Leung, Alden Wierbowski, Shayne D. Ozer, Abdullah Booth, James G. Lis, John T. Yu, Haiyuan Transcription imparts architecture, function, and logic to enhancer units |
title | Transcription imparts architecture, function, and logic to enhancer units |
title_full | Transcription imparts architecture, function, and logic to enhancer units |
title_fullStr | Transcription imparts architecture, function, and logic to enhancer units |
title_full_unstemmed | Transcription imparts architecture, function, and logic to enhancer units |
title_short | Transcription imparts architecture, function, and logic to enhancer units |
title_sort | transcription imparts architecture, function, and logic to enhancer units |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7541647/ https://www.ncbi.nlm.nih.gov/pubmed/32958950 http://dx.doi.org/10.1038/s41588-020-0686-2 |
work_keys_str_mv | AT tippensnathanield transcriptionimpartsarchitecturefunctionandlogictoenhancerunits AT liangjin transcriptionimpartsarchitecturefunctionandlogictoenhancerunits AT kingyungleungalden transcriptionimpartsarchitecturefunctionandlogictoenhancerunits AT wierbowskishayned transcriptionimpartsarchitecturefunctionandlogictoenhancerunits AT ozerabdullah transcriptionimpartsarchitecturefunctionandlogictoenhancerunits AT boothjamesg transcriptionimpartsarchitecturefunctionandlogictoenhancerunits AT lisjohnt transcriptionimpartsarchitecturefunctionandlogictoenhancerunits AT yuhaiyuan transcriptionimpartsarchitecturefunctionandlogictoenhancerunits |