Cargando…
Functional modulation of atrio-ventricular conduction by enhanced late sodium current and calcium-dependent mechanisms in Scn5a(1798insD/+) mice
AIMS: SCN5A mutations are associated with arrhythmia syndromes, including Brugada syndrome, long QT syndrome type 3 (LQT3), and cardiac conduction disease. Long QT syndrome type 3 patients display atrio-ventricular (AV) conduction slowing which may contribute to arrhythmogenesis. We here investigate...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7544532/ https://www.ncbi.nlm.nih.gov/pubmed/32778883 http://dx.doi.org/10.1093/europace/euaa127 |
_version_ | 1783591874018148352 |
---|---|
author | Rivaud, Mathilde R Marchal, Gerard A Wolswinkel, Rianne Jansen, John A van der Made, Ingeborg Beekman, Leander Ruiz-Villalba, Adrián Baartscheer, Antonius Rajamani, Sridharan Belardinelli, Luiz van Veen, Toon A B Basso, Cristina Thiene, Gaetano Creemers, Esther E Bezzina, Connie R Remme, Carol Ann |
author_facet | Rivaud, Mathilde R Marchal, Gerard A Wolswinkel, Rianne Jansen, John A van der Made, Ingeborg Beekman, Leander Ruiz-Villalba, Adrián Baartscheer, Antonius Rajamani, Sridharan Belardinelli, Luiz van Veen, Toon A B Basso, Cristina Thiene, Gaetano Creemers, Esther E Bezzina, Connie R Remme, Carol Ann |
author_sort | Rivaud, Mathilde R |
collection | PubMed |
description | AIMS: SCN5A mutations are associated with arrhythmia syndromes, including Brugada syndrome, long QT syndrome type 3 (LQT3), and cardiac conduction disease. Long QT syndrome type 3 patients display atrio-ventricular (AV) conduction slowing which may contribute to arrhythmogenesis. We here investigated the as yet unknown underlying mechanisms. METHODS AND RESULTS: We assessed electrophysiological and molecular alterations underlying AV-conduction abnormalities in mice carrying the Scn5a(1798insD/+) mutation. Langendorff-perfused Scn5a(1798insD/+) hearts showed prolonged AV-conduction compared to wild type (WT) without changes in atrial and His-ventricular (HV) conduction. The late sodium current (I(Na,L)) inhibitor ranolazine (RAN) normalized AV-conduction in Scn5a(1798insD/+) mice, likely by preventing the mutation-induced increase in intracellular sodium ([Na(+)](i)) and calcium ([Ca(2+)](i)) concentrations. Indeed, further enhancement of [Na(+)](i) and [Ca(2+)](i) by the Na(+)/K(+)-ATPase inhibitor ouabain caused excessive increase in AV-conduction time in Scn5a(1798insD/+) hearts. Scn5a(1798insD/+) mice from the 129P2 strain displayed more severe AV-conduction abnormalities than FVB/N-Scn5a(1798insD/+) mice, in line with their larger mutation-induced I(Na,L). Transverse aortic constriction (TAC) caused excessive prolongation of AV-conduction in FVB/N-Scn5a(1798insD/+) mice (while HV-intervals remained unchanged), which was prevented by chronic RAN treatment. Scn5a(1798insD/+)-TAC hearts showed decreased mRNA levels of conduction genes in the AV-nodal region, but no structural changes in the AV-node or His bundle. In Scn5a(1798insD/+)-TAC mice deficient for the transcription factor Nfatc2 (effector of the calcium-calcineurin pathway), AV-conduction and conduction gene expression were restored to WT levels. CONCLUSIONS: Our findings indicate a detrimental role for enhanced I(Na,L) and consequent calcium dysregulation on AV-conduction in Scn5a(1798insD/+) mice, providing evidence for a functional mechanism underlying AV-conduction disturbances secondary to gain-of-function SCN5A mutations. |
format | Online Article Text |
id | pubmed-7544532 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-75445322020-10-15 Functional modulation of atrio-ventricular conduction by enhanced late sodium current and calcium-dependent mechanisms in Scn5a(1798insD/+) mice Rivaud, Mathilde R Marchal, Gerard A Wolswinkel, Rianne Jansen, John A van der Made, Ingeborg Beekman, Leander Ruiz-Villalba, Adrián Baartscheer, Antonius Rajamani, Sridharan Belardinelli, Luiz van Veen, Toon A B Basso, Cristina Thiene, Gaetano Creemers, Esther E Bezzina, Connie R Remme, Carol Ann Europace Basic Science AIMS: SCN5A mutations are associated with arrhythmia syndromes, including Brugada syndrome, long QT syndrome type 3 (LQT3), and cardiac conduction disease. Long QT syndrome type 3 patients display atrio-ventricular (AV) conduction slowing which may contribute to arrhythmogenesis. We here investigated the as yet unknown underlying mechanisms. METHODS AND RESULTS: We assessed electrophysiological and molecular alterations underlying AV-conduction abnormalities in mice carrying the Scn5a(1798insD/+) mutation. Langendorff-perfused Scn5a(1798insD/+) hearts showed prolonged AV-conduction compared to wild type (WT) without changes in atrial and His-ventricular (HV) conduction. The late sodium current (I(Na,L)) inhibitor ranolazine (RAN) normalized AV-conduction in Scn5a(1798insD/+) mice, likely by preventing the mutation-induced increase in intracellular sodium ([Na(+)](i)) and calcium ([Ca(2+)](i)) concentrations. Indeed, further enhancement of [Na(+)](i) and [Ca(2+)](i) by the Na(+)/K(+)-ATPase inhibitor ouabain caused excessive increase in AV-conduction time in Scn5a(1798insD/+) hearts. Scn5a(1798insD/+) mice from the 129P2 strain displayed more severe AV-conduction abnormalities than FVB/N-Scn5a(1798insD/+) mice, in line with their larger mutation-induced I(Na,L). Transverse aortic constriction (TAC) caused excessive prolongation of AV-conduction in FVB/N-Scn5a(1798insD/+) mice (while HV-intervals remained unchanged), which was prevented by chronic RAN treatment. Scn5a(1798insD/+)-TAC hearts showed decreased mRNA levels of conduction genes in the AV-nodal region, but no structural changes in the AV-node or His bundle. In Scn5a(1798insD/+)-TAC mice deficient for the transcription factor Nfatc2 (effector of the calcium-calcineurin pathway), AV-conduction and conduction gene expression were restored to WT levels. CONCLUSIONS: Our findings indicate a detrimental role for enhanced I(Na,L) and consequent calcium dysregulation on AV-conduction in Scn5a(1798insD/+) mice, providing evidence for a functional mechanism underlying AV-conduction disturbances secondary to gain-of-function SCN5A mutations. Oxford University Press 2020-08-10 /pmc/articles/PMC7544532/ /pubmed/32778883 http://dx.doi.org/10.1093/europace/euaa127 Text en © The Author(s) 2020. Published by Oxford University Press on behalf of the European Society of Cardiology http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Basic Science Rivaud, Mathilde R Marchal, Gerard A Wolswinkel, Rianne Jansen, John A van der Made, Ingeborg Beekman, Leander Ruiz-Villalba, Adrián Baartscheer, Antonius Rajamani, Sridharan Belardinelli, Luiz van Veen, Toon A B Basso, Cristina Thiene, Gaetano Creemers, Esther E Bezzina, Connie R Remme, Carol Ann Functional modulation of atrio-ventricular conduction by enhanced late sodium current and calcium-dependent mechanisms in Scn5a(1798insD/+) mice |
title | Functional modulation of atrio-ventricular conduction by enhanced late sodium current and calcium-dependent mechanisms in Scn5a(1798insD/+) mice |
title_full | Functional modulation of atrio-ventricular conduction by enhanced late sodium current and calcium-dependent mechanisms in Scn5a(1798insD/+) mice |
title_fullStr | Functional modulation of atrio-ventricular conduction by enhanced late sodium current and calcium-dependent mechanisms in Scn5a(1798insD/+) mice |
title_full_unstemmed | Functional modulation of atrio-ventricular conduction by enhanced late sodium current and calcium-dependent mechanisms in Scn5a(1798insD/+) mice |
title_short | Functional modulation of atrio-ventricular conduction by enhanced late sodium current and calcium-dependent mechanisms in Scn5a(1798insD/+) mice |
title_sort | functional modulation of atrio-ventricular conduction by enhanced late sodium current and calcium-dependent mechanisms in scn5a(1798insd/+) mice |
topic | Basic Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7544532/ https://www.ncbi.nlm.nih.gov/pubmed/32778883 http://dx.doi.org/10.1093/europace/euaa127 |
work_keys_str_mv | AT rivaudmathilder functionalmodulationofatrioventricularconductionbyenhancedlatesodiumcurrentandcalciumdependentmechanismsinscn5a1798insdmice AT marchalgerarda functionalmodulationofatrioventricularconductionbyenhancedlatesodiumcurrentandcalciumdependentmechanismsinscn5a1798insdmice AT wolswinkelrianne functionalmodulationofatrioventricularconductionbyenhancedlatesodiumcurrentandcalciumdependentmechanismsinscn5a1798insdmice AT jansenjohna functionalmodulationofatrioventricularconductionbyenhancedlatesodiumcurrentandcalciumdependentmechanismsinscn5a1798insdmice AT vandermadeingeborg functionalmodulationofatrioventricularconductionbyenhancedlatesodiumcurrentandcalciumdependentmechanismsinscn5a1798insdmice AT beekmanleander functionalmodulationofatrioventricularconductionbyenhancedlatesodiumcurrentandcalciumdependentmechanismsinscn5a1798insdmice AT ruizvillalbaadrian functionalmodulationofatrioventricularconductionbyenhancedlatesodiumcurrentandcalciumdependentmechanismsinscn5a1798insdmice AT baartscheerantonius functionalmodulationofatrioventricularconductionbyenhancedlatesodiumcurrentandcalciumdependentmechanismsinscn5a1798insdmice AT rajamanisridharan functionalmodulationofatrioventricularconductionbyenhancedlatesodiumcurrentandcalciumdependentmechanismsinscn5a1798insdmice AT belardinelliluiz functionalmodulationofatrioventricularconductionbyenhancedlatesodiumcurrentandcalciumdependentmechanismsinscn5a1798insdmice AT vanveentoonab functionalmodulationofatrioventricularconductionbyenhancedlatesodiumcurrentandcalciumdependentmechanismsinscn5a1798insdmice AT bassocristina functionalmodulationofatrioventricularconductionbyenhancedlatesodiumcurrentandcalciumdependentmechanismsinscn5a1798insdmice AT thienegaetano functionalmodulationofatrioventricularconductionbyenhancedlatesodiumcurrentandcalciumdependentmechanismsinscn5a1798insdmice AT creemersesthere functionalmodulationofatrioventricularconductionbyenhancedlatesodiumcurrentandcalciumdependentmechanismsinscn5a1798insdmice AT bezzinaconnier functionalmodulationofatrioventricularconductionbyenhancedlatesodiumcurrentandcalciumdependentmechanismsinscn5a1798insdmice AT remmecarolann functionalmodulationofatrioventricularconductionbyenhancedlatesodiumcurrentandcalciumdependentmechanismsinscn5a1798insdmice |