Cargando…
Restoring the epigenetically silenced PCK2 suppresses renal cell carcinoma progression and increases sensitivity to sunitinib by promoting endoplasmic reticulum stress
Rationale: Tumors have significant abnormalities in various biological properties. In renal cell carcinoma (RCC), metabolic abnormalities are characteristic biological dysfunction that cannot be ignored. Despite this, many aspects of this dysfunction have not been fully explained. The purpose of thi...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Ivyspring International Publisher
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7546001/ https://www.ncbi.nlm.nih.gov/pubmed/33052225 http://dx.doi.org/10.7150/thno.48469 |
_version_ | 1783592146634276864 |
---|---|
author | Xiong, Zhiyong Yuan, Changfei shi, Jian Xiong, Wei Huang, Yu Xiao, Wen Yang, Hongmei Chen, Ke Zhang, Xiaoping |
author_facet | Xiong, Zhiyong Yuan, Changfei shi, Jian Xiong, Wei Huang, Yu Xiao, Wen Yang, Hongmei Chen, Ke Zhang, Xiaoping |
author_sort | Xiong, Zhiyong |
collection | PubMed |
description | Rationale: Tumors have significant abnormalities in various biological properties. In renal cell carcinoma (RCC), metabolic abnormalities are characteristic biological dysfunction that cannot be ignored. Despite this, many aspects of this dysfunction have not been fully explained. The purpose of this study was to reveal a new mechanism of metabolic and energy-related biological abnormalities in RCC. Methods: Molecular screening and bioinformatics analysis were performed in RCC based on data from The Cancer Genome Atlas (TCGA) database. Regulated pathways were investigated by qRT-PCR, immunoblot analysis and immunohistochemistry. A series of functional analyses was performed in cell lines and xenograft models. Results: By screening the biological abnormality core dataset-mitochondria-related dataset and the metabolic abnormality core dataset-energy metabolism-related dataset in public RCC databases, PCK2 was found to be differentially expressed in RCC compared with normal tissue. Further analysis by the TCGA database showed that PCK2 was significantly downregulated in RCC and predicted a poor prognosis. Through additional studies, it was found that a low expression of PCK2 in RCC was caused by methylation of its promoter region. Restoration of PCK2 expression in RCC cells repressed tumor progression and increased their sensitivity to sunitinib. Finally, mechanistic investigations indicated that PCK2 mediated the above processes by promoting endoplasmic reticulum stress. Conclusions: Collectively, our results identify a specific mechanism by which PCK2 suppresses the progression of renal cell carcinoma (RCC) and increases sensitivity to sunitinib by promoting endoplasmic reticulum stress. This finding provides a new biomarker for RCC as well as novel targets and strategies for the treatment of RCC. |
format | Online Article Text |
id | pubmed-7546001 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Ivyspring International Publisher |
record_format | MEDLINE/PubMed |
spelling | pubmed-75460012020-10-12 Restoring the epigenetically silenced PCK2 suppresses renal cell carcinoma progression and increases sensitivity to sunitinib by promoting endoplasmic reticulum stress Xiong, Zhiyong Yuan, Changfei shi, Jian Xiong, Wei Huang, Yu Xiao, Wen Yang, Hongmei Chen, Ke Zhang, Xiaoping Theranostics Research Paper Rationale: Tumors have significant abnormalities in various biological properties. In renal cell carcinoma (RCC), metabolic abnormalities are characteristic biological dysfunction that cannot be ignored. Despite this, many aspects of this dysfunction have not been fully explained. The purpose of this study was to reveal a new mechanism of metabolic and energy-related biological abnormalities in RCC. Methods: Molecular screening and bioinformatics analysis were performed in RCC based on data from The Cancer Genome Atlas (TCGA) database. Regulated pathways were investigated by qRT-PCR, immunoblot analysis and immunohistochemistry. A series of functional analyses was performed in cell lines and xenograft models. Results: By screening the biological abnormality core dataset-mitochondria-related dataset and the metabolic abnormality core dataset-energy metabolism-related dataset in public RCC databases, PCK2 was found to be differentially expressed in RCC compared with normal tissue. Further analysis by the TCGA database showed that PCK2 was significantly downregulated in RCC and predicted a poor prognosis. Through additional studies, it was found that a low expression of PCK2 in RCC was caused by methylation of its promoter region. Restoration of PCK2 expression in RCC cells repressed tumor progression and increased their sensitivity to sunitinib. Finally, mechanistic investigations indicated that PCK2 mediated the above processes by promoting endoplasmic reticulum stress. Conclusions: Collectively, our results identify a specific mechanism by which PCK2 suppresses the progression of renal cell carcinoma (RCC) and increases sensitivity to sunitinib by promoting endoplasmic reticulum stress. This finding provides a new biomarker for RCC as well as novel targets and strategies for the treatment of RCC. Ivyspring International Publisher 2020-09-15 /pmc/articles/PMC7546001/ /pubmed/33052225 http://dx.doi.org/10.7150/thno.48469 Text en © The author(s) This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions. |
spellingShingle | Research Paper Xiong, Zhiyong Yuan, Changfei shi, Jian Xiong, Wei Huang, Yu Xiao, Wen Yang, Hongmei Chen, Ke Zhang, Xiaoping Restoring the epigenetically silenced PCK2 suppresses renal cell carcinoma progression and increases sensitivity to sunitinib by promoting endoplasmic reticulum stress |
title | Restoring the epigenetically silenced PCK2 suppresses renal cell carcinoma progression and increases sensitivity to sunitinib by promoting endoplasmic reticulum stress |
title_full | Restoring the epigenetically silenced PCK2 suppresses renal cell carcinoma progression and increases sensitivity to sunitinib by promoting endoplasmic reticulum stress |
title_fullStr | Restoring the epigenetically silenced PCK2 suppresses renal cell carcinoma progression and increases sensitivity to sunitinib by promoting endoplasmic reticulum stress |
title_full_unstemmed | Restoring the epigenetically silenced PCK2 suppresses renal cell carcinoma progression and increases sensitivity to sunitinib by promoting endoplasmic reticulum stress |
title_short | Restoring the epigenetically silenced PCK2 suppresses renal cell carcinoma progression and increases sensitivity to sunitinib by promoting endoplasmic reticulum stress |
title_sort | restoring the epigenetically silenced pck2 suppresses renal cell carcinoma progression and increases sensitivity to sunitinib by promoting endoplasmic reticulum stress |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7546001/ https://www.ncbi.nlm.nih.gov/pubmed/33052225 http://dx.doi.org/10.7150/thno.48469 |
work_keys_str_mv | AT xiongzhiyong restoringtheepigeneticallysilencedpck2suppressesrenalcellcarcinomaprogressionandincreasessensitivitytosunitinibbypromotingendoplasmicreticulumstress AT yuanchangfei restoringtheepigeneticallysilencedpck2suppressesrenalcellcarcinomaprogressionandincreasessensitivitytosunitinibbypromotingendoplasmicreticulumstress AT shijian restoringtheepigeneticallysilencedpck2suppressesrenalcellcarcinomaprogressionandincreasessensitivitytosunitinibbypromotingendoplasmicreticulumstress AT xiongwei restoringtheepigeneticallysilencedpck2suppressesrenalcellcarcinomaprogressionandincreasessensitivitytosunitinibbypromotingendoplasmicreticulumstress AT huangyu restoringtheepigeneticallysilencedpck2suppressesrenalcellcarcinomaprogressionandincreasessensitivitytosunitinibbypromotingendoplasmicreticulumstress AT xiaowen restoringtheepigeneticallysilencedpck2suppressesrenalcellcarcinomaprogressionandincreasessensitivitytosunitinibbypromotingendoplasmicreticulumstress AT yanghongmei restoringtheepigeneticallysilencedpck2suppressesrenalcellcarcinomaprogressionandincreasessensitivitytosunitinibbypromotingendoplasmicreticulumstress AT chenke restoringtheepigeneticallysilencedpck2suppressesrenalcellcarcinomaprogressionandincreasessensitivitytosunitinibbypromotingendoplasmicreticulumstress AT zhangxiaoping restoringtheepigeneticallysilencedpck2suppressesrenalcellcarcinomaprogressionandincreasessensitivitytosunitinibbypromotingendoplasmicreticulumstress |