Cargando…
Targeting BCL10 by small peptides for the treatment of B cell lymphoma
Rationale: Constitutive activation of the NF-κB signalling pathway plays a pivotal role in the pathogenesis of activated B cell-like diffuse large B-cell lymphomas (ABC-DLBCLs), the most aggressive and chemoresistant form of DLBCL. In ABC-DLBCLs, the CARMA1-BCL10 (CB) complex forms a filamentous str...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Ivyspring International Publisher
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7546004/ https://www.ncbi.nlm.nih.gov/pubmed/33052237 http://dx.doi.org/10.7150/thno.47533 |
_version_ | 1783592147320045568 |
---|---|
author | Bao, Wei Sun, Chenxia Sun, Xiaochen He, Miaoxia Yu, Haolan Yan, Wenfen Wen, Fuping Zhang, Liang Yang, Chenghua |
author_facet | Bao, Wei Sun, Chenxia Sun, Xiaochen He, Miaoxia Yu, Haolan Yan, Wenfen Wen, Fuping Zhang, Liang Yang, Chenghua |
author_sort | Bao, Wei |
collection | PubMed |
description | Rationale: Constitutive activation of the NF-κB signalling pathway plays a pivotal role in the pathogenesis of activated B cell-like diffuse large B-cell lymphomas (ABC-DLBCLs), the most aggressive and chemoresistant form of DLBCL. In ABC-DLBCLs, the CARMA1-BCL10 (CB) complex forms a filamentous structure and functions as a supramolecular organizing centre (CB-SMOC) that is required for constitutive NF-κB activation, making it an attractive drug target for ABC-DLBCL treatment. However, a pharmaceutical approach targeting CB-SMOC has been lacking. Here, we developed Bcl10 peptide inhibitors (BPIs) that specifically target the BCL10 filamentation process. Methods: Electron microscopy and immunofluorescence imaging were used to visualize the effect of the BPIs on the BCL10 filamentation process. The cytotoxicity of the tested BPIs was evaluated in DLBCL cell lines according to cell proliferation assays. Different in vitro experiments (pharmacokinetics, immunoprecipitation, western blotting, annexin V and PI staining) were conducted to determine the functional mechanisms of the BPIs. The in vivo therapeutic effect of the BPIs was examined in different xenograft DLBCL mouse models. Finally, Ki67 and TUNEL staining and histopathology analysis were used to evaluate the antineoplastic mechanisms and systemic toxicity of the BPIs. Results: We showed that these BPIs can effectively disrupt the BCL10 filamentation process, destabilize BCL10 and suppress NF-κB signalling in ABC-DLBCL cells. By examining a panel of DLBCL cell lines, we found that these BPIs selectively repressed the growth of CB-SMOC-dependent DLBCL cells by inducing apoptosis and cell cycle arrest. Moreover, by converting the BPIs to acquire a D-retro inverso (DRI) configuration, we developed DRI-BPIs with significantly improved intracellular stability and unimpaired BPI activity. These DRI-BPIs selectively repressed the growth of CB-SMOC-dependent DLBCL tumors in mouse xenograft models without eliciting discernible adverse effects. Conclusion: We developed novel BPIs to target the BCL10 filamentation process and demonstrated that targeting BCL10 by BPIs is a potentially safe and effective pharmaceutical approach for the treatment of ABC-DLBCL and other CB-SMOC-dependent malignancies. |
format | Online Article Text |
id | pubmed-7546004 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Ivyspring International Publisher |
record_format | MEDLINE/PubMed |
spelling | pubmed-75460042020-10-12 Targeting BCL10 by small peptides for the treatment of B cell lymphoma Bao, Wei Sun, Chenxia Sun, Xiaochen He, Miaoxia Yu, Haolan Yan, Wenfen Wen, Fuping Zhang, Liang Yang, Chenghua Theranostics Research Paper Rationale: Constitutive activation of the NF-κB signalling pathway plays a pivotal role in the pathogenesis of activated B cell-like diffuse large B-cell lymphomas (ABC-DLBCLs), the most aggressive and chemoresistant form of DLBCL. In ABC-DLBCLs, the CARMA1-BCL10 (CB) complex forms a filamentous structure and functions as a supramolecular organizing centre (CB-SMOC) that is required for constitutive NF-κB activation, making it an attractive drug target for ABC-DLBCL treatment. However, a pharmaceutical approach targeting CB-SMOC has been lacking. Here, we developed Bcl10 peptide inhibitors (BPIs) that specifically target the BCL10 filamentation process. Methods: Electron microscopy and immunofluorescence imaging were used to visualize the effect of the BPIs on the BCL10 filamentation process. The cytotoxicity of the tested BPIs was evaluated in DLBCL cell lines according to cell proliferation assays. Different in vitro experiments (pharmacokinetics, immunoprecipitation, western blotting, annexin V and PI staining) were conducted to determine the functional mechanisms of the BPIs. The in vivo therapeutic effect of the BPIs was examined in different xenograft DLBCL mouse models. Finally, Ki67 and TUNEL staining and histopathology analysis were used to evaluate the antineoplastic mechanisms and systemic toxicity of the BPIs. Results: We showed that these BPIs can effectively disrupt the BCL10 filamentation process, destabilize BCL10 and suppress NF-κB signalling in ABC-DLBCL cells. By examining a panel of DLBCL cell lines, we found that these BPIs selectively repressed the growth of CB-SMOC-dependent DLBCL cells by inducing apoptosis and cell cycle arrest. Moreover, by converting the BPIs to acquire a D-retro inverso (DRI) configuration, we developed DRI-BPIs with significantly improved intracellular stability and unimpaired BPI activity. These DRI-BPIs selectively repressed the growth of CB-SMOC-dependent DLBCL tumors in mouse xenograft models without eliciting discernible adverse effects. Conclusion: We developed novel BPIs to target the BCL10 filamentation process and demonstrated that targeting BCL10 by BPIs is a potentially safe and effective pharmaceutical approach for the treatment of ABC-DLBCL and other CB-SMOC-dependent malignancies. Ivyspring International Publisher 2020-09-19 /pmc/articles/PMC7546004/ /pubmed/33052237 http://dx.doi.org/10.7150/thno.47533 Text en © The author(s) This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions. |
spellingShingle | Research Paper Bao, Wei Sun, Chenxia Sun, Xiaochen He, Miaoxia Yu, Haolan Yan, Wenfen Wen, Fuping Zhang, Liang Yang, Chenghua Targeting BCL10 by small peptides for the treatment of B cell lymphoma |
title | Targeting BCL10 by small peptides for the treatment of B cell lymphoma |
title_full | Targeting BCL10 by small peptides for the treatment of B cell lymphoma |
title_fullStr | Targeting BCL10 by small peptides for the treatment of B cell lymphoma |
title_full_unstemmed | Targeting BCL10 by small peptides for the treatment of B cell lymphoma |
title_short | Targeting BCL10 by small peptides for the treatment of B cell lymphoma |
title_sort | targeting bcl10 by small peptides for the treatment of b cell lymphoma |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7546004/ https://www.ncbi.nlm.nih.gov/pubmed/33052237 http://dx.doi.org/10.7150/thno.47533 |
work_keys_str_mv | AT baowei targetingbcl10bysmallpeptidesforthetreatmentofbcelllymphoma AT sunchenxia targetingbcl10bysmallpeptidesforthetreatmentofbcelllymphoma AT sunxiaochen targetingbcl10bysmallpeptidesforthetreatmentofbcelllymphoma AT hemiaoxia targetingbcl10bysmallpeptidesforthetreatmentofbcelllymphoma AT yuhaolan targetingbcl10bysmallpeptidesforthetreatmentofbcelllymphoma AT yanwenfen targetingbcl10bysmallpeptidesforthetreatmentofbcelllymphoma AT wenfuping targetingbcl10bysmallpeptidesforthetreatmentofbcelllymphoma AT zhangliang targetingbcl10bysmallpeptidesforthetreatmentofbcelllymphoma AT yangchenghua targetingbcl10bysmallpeptidesforthetreatmentofbcelllymphoma |