Cargando…
Experimental and Computational Evidence for a Loose Transition State in Phosphoroimidazolide Hydrolysis
[Image: see text] Phosphoroimidazolides play a critical role in several enzymatic phosphoryl transfer reactions and have been studied extensively as activated monomers for nonenzymatic nucleic acid replication, but the detailed mechanisms of these phosphoryl transfer reactions remain elusive. Some a...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2016
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7547882/ https://www.ncbi.nlm.nih.gov/pubmed/26974265 http://dx.doi.org/10.1021/jacs.6b00784 |
_version_ | 1783592513480687616 |
---|---|
author | Li, Li Lelyveld, Victor S. Prywes, Noam Szostak, Jack W. |
author_facet | Li, Li Lelyveld, Victor S. Prywes, Noam Szostak, Jack W. |
author_sort | Li, Li |
collection | PubMed |
description | [Image: see text] Phosphoroimidazolides play a critical role in several enzymatic phosphoryl transfer reactions and have been studied extensively as activated monomers for nonenzymatic nucleic acid replication, but the detailed mechanisms of these phosphoryl transfer reactions remain elusive. Some aspects of the mechanism can be deduced by studying the hydrolysis reaction, a simpler system that is amenable to a thorough mechanistic treatment. Here we characterize the transition state of phosphoroimidazolide hydrolysis by kinetic isotope effect (KIE) and linear free energy relationship (LFER) measurements, and theoretical calculations. The KIE and LFER observations are best explained by calculated loose transition structures with extensive scissile bond cleavage. These three-dimensional models of the transition state provide the basis for future mechanistic investigations of phosphoroimidazolide reactions. |
format | Online Article Text |
id | pubmed-7547882 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | American Chemical
Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-75478822020-10-13 Experimental and Computational Evidence for a Loose Transition State in Phosphoroimidazolide Hydrolysis Li, Li Lelyveld, Victor S. Prywes, Noam Szostak, Jack W. J Am Chem Soc [Image: see text] Phosphoroimidazolides play a critical role in several enzymatic phosphoryl transfer reactions and have been studied extensively as activated monomers for nonenzymatic nucleic acid replication, but the detailed mechanisms of these phosphoryl transfer reactions remain elusive. Some aspects of the mechanism can be deduced by studying the hydrolysis reaction, a simpler system that is amenable to a thorough mechanistic treatment. Here we characterize the transition state of phosphoroimidazolide hydrolysis by kinetic isotope effect (KIE) and linear free energy relationship (LFER) measurements, and theoretical calculations. The KIE and LFER observations are best explained by calculated loose transition structures with extensive scissile bond cleavage. These three-dimensional models of the transition state provide the basis for future mechanistic investigations of phosphoroimidazolide reactions. American Chemical Society 2016-03-14 2016-03-30 /pmc/articles/PMC7547882/ /pubmed/26974265 http://dx.doi.org/10.1021/jacs.6b00784 Text en This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes. |
spellingShingle | Li, Li Lelyveld, Victor S. Prywes, Noam Szostak, Jack W. Experimental and Computational Evidence for a Loose Transition State in Phosphoroimidazolide Hydrolysis |
title | Experimental
and Computational Evidence for a Loose
Transition State in Phosphoroimidazolide Hydrolysis |
title_full | Experimental
and Computational Evidence for a Loose
Transition State in Phosphoroimidazolide Hydrolysis |
title_fullStr | Experimental
and Computational Evidence for a Loose
Transition State in Phosphoroimidazolide Hydrolysis |
title_full_unstemmed | Experimental
and Computational Evidence for a Loose
Transition State in Phosphoroimidazolide Hydrolysis |
title_short | Experimental
and Computational Evidence for a Loose
Transition State in Phosphoroimidazolide Hydrolysis |
title_sort | experimental
and computational evidence for a loose
transition state in phosphoroimidazolide hydrolysis |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7547882/ https://www.ncbi.nlm.nih.gov/pubmed/26974265 http://dx.doi.org/10.1021/jacs.6b00784 |
work_keys_str_mv | AT lili experimentalandcomputationalevidenceforaloosetransitionstateinphosphoroimidazolidehydrolysis AT lelyveldvictors experimentalandcomputationalevidenceforaloosetransitionstateinphosphoroimidazolidehydrolysis AT prywesnoam experimentalandcomputationalevidenceforaloosetransitionstateinphosphoroimidazolidehydrolysis AT szostakjackw experimentalandcomputationalevidenceforaloosetransitionstateinphosphoroimidazolidehydrolysis |