Cargando…
Transition-State Expansion: A Quantitative Model for Counterion Effects in Ionic Reactions
Ionic reactions are the most common reactions used in chemical synthesis. In relatively low dielectric constant solvents (e.g., dichloromethane, toluene), ions usually exist as ion pairs. Despite the importance of counterions, a quantitative description of how the paired 'counterion' affec...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7554029/ https://www.ncbi.nlm.nih.gov/pubmed/33083752 http://dx.doi.org/10.1016/j.isci.2020.101593 |
Sumario: | Ionic reactions are the most common reactions used in chemical synthesis. In relatively low dielectric constant solvents (e.g., dichloromethane, toluene), ions usually exist as ion pairs. Despite the importance of counterions, a quantitative description of how the paired 'counterion' affects the reaction kinetic is still elusive. We introduce a general and quantitative model, namely transition-state expansion (TSE), that describes how the size of a counterion affects the transition-state structure and the kinetics of an ionic reaction. This model could rationalize the counterion effects in nucleophilic substitutions and gold-catalyzed enyne cycloisomerizations. |
---|