Cargando…

Vast Self-Renewal Potential of Human AGM Region HSCs Dramatically Declines in the Umbilical Cord Blood

Human hematopoietic stem cells (HSCs) emerge in the aorta-gonad-mesonephros (AGM) region during Carnegie stages (CS) 14–17. Although we previously reported that these HSCs can generate no less than 300 daughter HSCs, their actual number has never been established. Here, we show that a single human A...

Descripción completa

Detalles Bibliográficos
Autores principales: Ivanovs, Andrejs, Rybtsov, Stanislav, Anderson, Richard A., Medvinsky, Alexander
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7561509/
https://www.ncbi.nlm.nih.gov/pubmed/32946804
http://dx.doi.org/10.1016/j.stemcr.2020.08.008
Descripción
Sumario:Human hematopoietic stem cells (HSCs) emerge in the aorta-gonad-mesonephros (AGM) region during Carnegie stages (CS) 14–17. Although we previously reported that these HSCs can generate no less than 300 daughter HSCs, their actual number has never been established. Here, we show that a single human AGM region HSC can generate 600–1,600 functional daughter HSCs. The presence of HSCs in the CS 17 liver in one case gave us a unique opportunity to describe a reduction of HSC self-renewal potential after liver colonization. From a clinical perspective, the efficacy of long-term hematopoietic regeneration depends on HSC self-renewal capacity. We quantitatively show that this capacity dramatically declines in the umbilical cord blood compared with HSCs in the AGM region. A full appreciation of the vast regenerative potential of the first human embryo-derived HSCs sets a new bar for generation of clinically useful HSCs from pluripotent stem cells.