Cargando…
Signal Transduction Pathway Activity in High-Grade, Serous Ovarian Carcinoma Reveals a More Favorable Prognosis in Tumors with Low PI3K and High NF-κB Pathway Activity: A Novel Approach to a Long-Standing Enigma
SIMPLE SUMMARY: All cells have a complex internal network of ‘communication chains’ called signal transduction pathways (STPs). Through interaction of different proteins in STPs, they are partly responsible for the behavior of a cell. In our study, we investigated the activity of eight STPs in datas...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7564278/ https://www.ncbi.nlm.nih.gov/pubmed/32961868 http://dx.doi.org/10.3390/cancers12092660 |
Sumario: | SIMPLE SUMMARY: All cells have a complex internal network of ‘communication chains’ called signal transduction pathways (STPs). Through interaction of different proteins in STPs, they are partly responsible for the behavior of a cell. In our study, we investigated the activity of eight STPs in datasets with genetic information on 140 cancer samples. These samples were derived from the most common subtype of ovarian cancer: high grade serous ovarian carcinoma (HGSC). With a novel method, we determined which STPs were active and discerned two groups based on activity of the phosphoinositide 3-kinase (PI3K) and nuclear factor-kappa B (NF-kB) pathways. The group with low PI3K and high NF-kB activity had a better progression free and overall survival compared to the group with high PI3K and low NF-kB activity. This difference may indicate that the ‘better prognosis group’ had a more active immune system or that the cells divided at a slower rate. ABSTRACT: We investigated signal transduction pathway (STP) activity in high-grade serous ovarian carcinoma (HGSC) in relation to progression-free survival (PFS) and overall survival (OS). We made use of signal transduction pathway activity analysis (STA analysis), a novel method to quantify functional STP activity. Activity of the following pathways was measured: androgen receptor (AR), estrogen receptor (ER), phosphoinositide 3-kinase (PI3K), Hedgehog (Hh), Notch, nuclear factor-kappa B (NF-κB), transforming growth factor beta (TGF-β), and Wnt. We selected HGSC samples from publicly available datasets of ovarian cancer tissue, and used repeated k-means clustering to identify pathway activity clusters. PFS and OS of the clusters were analyzed. We used a subset of publicly available dataset GSE9891 (n = 140), where repeated k-means clustering based on PI3K and NF-κB pathway activity in HGSC samples resulted in two stable clusters. The cluster with low PI3K and high NF-κB pathway activity (n = 72) had a more favorable prognosis for both PFS (p = 0.004) and OS (p = 0.001) compared to the high-PI3K and low-NF-κB pathway activity cluster (n = 68). The low PI3K and high NF-κB pathway activity of the favorable prognosis cluster may indicate a more active immune response, while the high PI3K and low NF-κB pathway activity of the unfavorable prognosis cluster may indicate high cell division. |
---|