Cargando…
Essentiality and Transcriptome-Enriched Pathway Scores Predict Drug-Combination Synergy
In the prediction of the synergy of drug combinations, systems pharmacology models expand the scope of experiment screening and overcome the limitations of current computational models posed by their lack of mechanical interpretation and integration of gene essentiality. We therefore investigated th...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7565142/ https://www.ncbi.nlm.nih.gov/pubmed/32906805 http://dx.doi.org/10.3390/biology9090278 |
_version_ | 1783595870432788480 |
---|---|
author | Li, Jin Huo, Yang Wu, Xue Liu, Enze Zeng, Zhi Tian, Zhen Fan, Kunjie Stover, Daniel Cheng, Lijun Li, Lang |
author_facet | Li, Jin Huo, Yang Wu, Xue Liu, Enze Zeng, Zhi Tian, Zhen Fan, Kunjie Stover, Daniel Cheng, Lijun Li, Lang |
author_sort | Li, Jin |
collection | PubMed |
description | In the prediction of the synergy of drug combinations, systems pharmacology models expand the scope of experiment screening and overcome the limitations of current computational models posed by their lack of mechanical interpretation and integration of gene essentiality. We therefore investigated the synergy of drug combinations for cancer therapies utilizing records in NCI ALMANAC, and we employed logistic regression to test the statistical significance of gene and pathway features in that interaction. We trained our predictive models using 43 NCI-60 cell lines, 165 KEGG pathways, and 114 drug pairs. Scores of drug-combination synergies showed a stronger correlation with pathway than gene features in overall trend analysis and a significant association with both genes and pathways in genome-wide association analyses. However, we observed little overlap of significant gene expressions and essentialities and no significant evidence that associated target and non-target genes and their pathways. We were able to validate four drug-combination pathways between two drug combinations, Nelarabine-Exemestane and Docetaxel-Vermurafenib, and two signaling pathways, PI3K-AKT and AMPK, in 16 cell lines. In conclusion, pathways significantly outperformed genes in predicting drug-combination synergy, and because they have very different mechanisms, gene expression and essentiality should be considered in combination rather than individually to improve this prediction. |
format | Online Article Text |
id | pubmed-7565142 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-75651422020-10-26 Essentiality and Transcriptome-Enriched Pathway Scores Predict Drug-Combination Synergy Li, Jin Huo, Yang Wu, Xue Liu, Enze Zeng, Zhi Tian, Zhen Fan, Kunjie Stover, Daniel Cheng, Lijun Li, Lang Biology (Basel) Article In the prediction of the synergy of drug combinations, systems pharmacology models expand the scope of experiment screening and overcome the limitations of current computational models posed by their lack of mechanical interpretation and integration of gene essentiality. We therefore investigated the synergy of drug combinations for cancer therapies utilizing records in NCI ALMANAC, and we employed logistic regression to test the statistical significance of gene and pathway features in that interaction. We trained our predictive models using 43 NCI-60 cell lines, 165 KEGG pathways, and 114 drug pairs. Scores of drug-combination synergies showed a stronger correlation with pathway than gene features in overall trend analysis and a significant association with both genes and pathways in genome-wide association analyses. However, we observed little overlap of significant gene expressions and essentialities and no significant evidence that associated target and non-target genes and their pathways. We were able to validate four drug-combination pathways between two drug combinations, Nelarabine-Exemestane and Docetaxel-Vermurafenib, and two signaling pathways, PI3K-AKT and AMPK, in 16 cell lines. In conclusion, pathways significantly outperformed genes in predicting drug-combination synergy, and because they have very different mechanisms, gene expression and essentiality should be considered in combination rather than individually to improve this prediction. MDPI 2020-09-07 /pmc/articles/PMC7565142/ /pubmed/32906805 http://dx.doi.org/10.3390/biology9090278 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Li, Jin Huo, Yang Wu, Xue Liu, Enze Zeng, Zhi Tian, Zhen Fan, Kunjie Stover, Daniel Cheng, Lijun Li, Lang Essentiality and Transcriptome-Enriched Pathway Scores Predict Drug-Combination Synergy |
title | Essentiality and Transcriptome-Enriched Pathway Scores Predict Drug-Combination Synergy |
title_full | Essentiality and Transcriptome-Enriched Pathway Scores Predict Drug-Combination Synergy |
title_fullStr | Essentiality and Transcriptome-Enriched Pathway Scores Predict Drug-Combination Synergy |
title_full_unstemmed | Essentiality and Transcriptome-Enriched Pathway Scores Predict Drug-Combination Synergy |
title_short | Essentiality and Transcriptome-Enriched Pathway Scores Predict Drug-Combination Synergy |
title_sort | essentiality and transcriptome-enriched pathway scores predict drug-combination synergy |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7565142/ https://www.ncbi.nlm.nih.gov/pubmed/32906805 http://dx.doi.org/10.3390/biology9090278 |
work_keys_str_mv | AT lijin essentialityandtranscriptomeenrichedpathwayscorespredictdrugcombinationsynergy AT huoyang essentialityandtranscriptomeenrichedpathwayscorespredictdrugcombinationsynergy AT wuxue essentialityandtranscriptomeenrichedpathwayscorespredictdrugcombinationsynergy AT liuenze essentialityandtranscriptomeenrichedpathwayscorespredictdrugcombinationsynergy AT zengzhi essentialityandtranscriptomeenrichedpathwayscorespredictdrugcombinationsynergy AT tianzhen essentialityandtranscriptomeenrichedpathwayscorespredictdrugcombinationsynergy AT fankunjie essentialityandtranscriptomeenrichedpathwayscorespredictdrugcombinationsynergy AT stoverdaniel essentialityandtranscriptomeenrichedpathwayscorespredictdrugcombinationsynergy AT chenglijun essentialityandtranscriptomeenrichedpathwayscorespredictdrugcombinationsynergy AT lilang essentialityandtranscriptomeenrichedpathwayscorespredictdrugcombinationsynergy |