Cargando…
Integrative genomics approach identifies conserved transcriptomic networks in Alzheimer’s disease
Alzheimer’s disease (AD) is a devastating neurological disorder characterized by changes in cell-type proportions and consequently marked alterations of the transcriptome. Here we use a data-driven systems biology meta-analytical approach across three human AD cohorts, encompassing six cortical brai...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7566321/ https://www.ncbi.nlm.nih.gov/pubmed/32803238 http://dx.doi.org/10.1093/hmg/ddaa182 |
Sumario: | Alzheimer’s disease (AD) is a devastating neurological disorder characterized by changes in cell-type proportions and consequently marked alterations of the transcriptome. Here we use a data-driven systems biology meta-analytical approach across three human AD cohorts, encompassing six cortical brain regions, and integrate with multi-scale datasets comprising of DNA methylation, histone acetylation, transcriptome- and genome-wide association studies and quantitative trait loci to further characterize the genetic architecture of AD. We perform co-expression network analysis across more than 1200 human brain samples, identifying robust AD-associated dysregulation of the transcriptome, unaltered in normal human aging. We assess the cell-type specificity of AD gene co-expression changes and estimate cell-type proportion changes in human AD by integrating co-expression modules with single-cell transcriptome data generated from 27 321 nuclei from human postmortem prefrontal cortical tissue. We also show that genetic variants of AD are enriched in a microglial AD-associated module and identify key transcription factors regulating co-expressed modules. Additionally, we validate our results in multiple published human AD gene expression datasets, which can be easily accessed using our online resource (https://swaruplab.bio.uci.edu/consensusAD). |
---|