Cargando…
Design, synthesis, and biological evaluation of N-arylpiperazine derivatives as interferon inducers
Type I Interferon (IFN) signaling plays an important role in the immune defense system against virus infection and in the innate immune response, thus IFNs are widely used as anti-viral agents and treatment for immune disorder or cancer. However, there is a growing demand for novel small-molecule IF...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7566768/ https://www.ncbi.nlm.nih.gov/pubmed/33075488 http://dx.doi.org/10.1016/j.bmcl.2020.127613 |
Sumario: | Type I Interferon (IFN) signaling plays an important role in the immune defense system against virus infection and in the innate immune response, thus IFNs are widely used as anti-viral agents and treatment for immune disorder or cancer. However, there is a growing demand for novel small-molecule IFN inducer due to tolerance, toxicity, or short duration of action following direct administration of IFNs. In this study, we assessed arylpiperazine (ARP) as a new core skeleton of IFN inducer. To investigate structure–activity relationship, we designed and synthesized a series of ARP analogues and evaluated the ability to stimulate IFN response in THP-1 human monocyte cells. Compound 5i was identified as a potent type I IFN inducer as it significantly increased cytokine secretion and increased expression of various IFN-stimulating genes which are representative biomarkers of type I IFN pathway. Our results suggested a beneficial therapeutic potential of 5i as an anti-viral agent. |
---|