Cargando…

A Qualitative Change in the Transcriptome Occurs after the First Cell Cycle and Coincides with Lumen Establishment during MDCKII Cystogenesis

Madin-Darby canine kidney II (MDCKII) cells are widely used to study epithelial morphogenesis. To better understand this process, we performed time course RNA-seq analysis of MDCKII 3D cystogenesis, along with polarized 2D cells for comparison. Our study reveals a biphasic change in the transcriptom...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Tianfang, Kwon, Sang-Ho, Peng, Xiao, Urdy, Severine, Lu, Zefu, Schmitz, Robert J., Dalton, Stephen, Mostov, Keith E., Zhao, Shaying
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7567049/
https://www.ncbi.nlm.nih.gov/pubmed/33089114
http://dx.doi.org/10.1016/j.isci.2020.101629
Descripción
Sumario:Madin-Darby canine kidney II (MDCKII) cells are widely used to study epithelial morphogenesis. To better understand this process, we performed time course RNA-seq analysis of MDCKII 3D cystogenesis, along with polarized 2D cells for comparison. Our study reveals a biphasic change in the transcriptome that occurs after the first cell cycle and coincides with lumen establishment. This change appears to be linked to translocation of β-catenin, supported by analyses with AVL9- and DENND5A-knockdown clones, and regulation by HNF1B, supported by ATAC-seq study. These findings indicate a qualitative change model for transcriptome remodeling during epithelial morphogenesis, leading to cell proliferation decrease and cell polarity establishment. Furthermore, our study reveals that active mitochondria are retained and chromatin accessibility decreases in 3D cysts but not in 2D polarized cells. This indicates that 3D culture is a better model than 2D culture for studying epithelial morphogenesis.