Cargando…

Accurate and sensitive detection of Salmonella in foods by engineered bacteriophages

Salmonella is a major causative agent of foodborne illness and rapid identification of this pathogen is essential to prevent disease. Currently most assays require high bacterial burdens or prolonged enrichment to achieve acceptable performance. A reduction in testing time without loss of sensitivit...

Descripción completa

Detalles Bibliográficos
Autores principales: Nguyen, Minh M., Gil, Jose, Brown, Matthew, Cesar Tondo, Eduardo, Soraya Martins de Aquino, Nathanyelle, Eisenberg, Marcia, Erickson, Stephen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7567081/
https://www.ncbi.nlm.nih.gov/pubmed/33060781
http://dx.doi.org/10.1038/s41598-020-74587-8
Descripción
Sumario:Salmonella is a major causative agent of foodborne illness and rapid identification of this pathogen is essential to prevent disease. Currently most assays require high bacterial burdens or prolonged enrichment to achieve acceptable performance. A reduction in testing time without loss of sensitivity is critical to allow food processors to safely decrease product holding time. To meet this need, a method was developed to detect Salmonella using luciferase reporter bacteriophages. Bacteriophages were engineered to express NanoLuc, a novel optimized luciferase originating from the deep-sea shrimp Oplophorus gracilirostris. NanoLuc-expressing bacteriophages had a limit of detection of 10–100 CFU per mL in culture without enrichment. Luciferase reporters demonstrated a broad host range covering all Salmonella species with one reporter detecting 99.3% of 269 inclusivity strains. Cross-reactivity was limited and only observed with other members of the Enterobacteriaceae family. In food matrix studies, a cocktail of engineered bacteriophages accurately detected 1 CFU in either 25 g of ground turkey with a 7 h enrichment or 100 g of powdered infant formula with a 16 h enrichment. Use of the NanoLuc reporter assay described herein resulted in a considerable reduction in enrichment time without a loss of sensitivity.