Cargando…
Compression Molded Soy Protein Films with Exopolysaccharides Produced by Cider Lactic Acid Bacteria
Two exopolysaccharide (EPS)-producing lactic acid bacteria (LAB) strains, Liquorilactobacillus (L.) sp CUPV281 and Liquorilactobacillus (L.) mali CUPV271, were isolated from Spanish apple must. Each of the strains produced a dextran, with different branching degrees, to be incorporated into soy prot...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7570117/ https://www.ncbi.nlm.nih.gov/pubmed/32947835 http://dx.doi.org/10.3390/polym12092106 |
Sumario: | Two exopolysaccharide (EPS)-producing lactic acid bacteria (LAB) strains, Liquorilactobacillus (L.) sp CUPV281 and Liquorilactobacillus (L.) mali CUPV271, were isolated from Spanish apple must. Each of the strains produced a dextran, with different branching degrees, to be incorporated into soy protein isolate (SPI) film-forming formulations. Films were prepared by compression molding, a more rapid processing method than solution casting and, thus, with a greater potential for scaling-up production. Thermal analysis showed that SPI and EPS start the degradation process at temperatures above 190 °C, confirming that the compression temperature selected (120 °C) was well below the corresponding degradation temperatures. Resulting films were transparent and homogeneous, as shown by UV-Vis spectroscopy and SEM, indicating the good compatibility between SPI and EPS. Furthermore, FTIR analysis showed that the interactions between SPI and EPS were physical interactions, probably by hydrogen bonding among the polar groups of SPI and EPS. Regarding antifungal/fungistatic activity, LAB strains used in this study showed an inhibitory effect on germination of fungal spores. |
---|