Cargando…
End-to-End Automated Lane-Change Maneuvering Considering Driving Style Using a Deep Deterministic Policy Gradient Algorithm
Changing lanes while driving requires coordinating the lateral and longitudinal controls of a vehicle, considering its running state and the surrounding environment. Although the existing rule-based automated lane-changing method is simple, it is unsuitable for unpredictable scenarios encountered in...
Autores principales: | Hu, Hongyu, Lu, Ziyang, Wang, Qi, Zheng, Chengyuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7570521/ https://www.ncbi.nlm.nih.gov/pubmed/32971987 http://dx.doi.org/10.3390/s20185443 |
Ejemplares similares
-
Noise-Adaption Extended Kalman Filter Based on Deep Deterministic Policy Gradient for Maneuvering Targets
por: Li, Jiali, et al.
Publicado: (2022) -
Network Architecture for Optimizing Deep Deterministic Policy Gradient Algorithms
por: Zhang, Haifei, et al.
Publicado: (2022) -
An End-to-End Lane Detection Model with Attention and Residual Block
por: Wang, Bo, et al.
Publicado: (2022) -
An enhanced deep deterministic policy gradient algorithm for intelligent control of robotic arms
por: Dong, Ruyi, et al.
Publicado: (2023) -
A dosing strategy model of deep deterministic policy gradient algorithm for sepsis patients
por: Lin, Tianlai, et al.
Publicado: (2023)