Cargando…
Estimation Method of Soluble Solid Content in Peach Based on Deep Features of Hyperspectral Imagery
Soluble solids content (SSC) is one of the important components for evaluating fruit quality. The rapid development of hyperspectral imagery provides an efficient method for non-destructive detection of SSC. Previous studies have shown that the internal quality evaluation of fruits based on spectral...
Autores principales: | Yang, Baohua, Gao, Yuan, Yan, Qian, Qi, Lin, Zhu, Yue, Wang, Bing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7570831/ https://www.ncbi.nlm.nih.gov/pubmed/32899646 http://dx.doi.org/10.3390/s20185021 |
Ejemplares similares
-
Estimation of Leaf Nitrogen Content in Wheat Based on Fusion of Spectral Features and Deep Features from Near Infrared Hyperspectral Imagery
por: Yang, Baohua, et al.
Publicado: (2021) -
Deep Learning and Hyperspectral Images Based Tomato Soluble Solids Content and Firmness Estimation
por: Xiang, Yun, et al.
Publicado: (2022) -
Application of Hyperspectral Imaging for Maturity and Soluble Solids Content Determination of Strawberry With Deep Learning Approaches
por: Su, Zhenzhu, et al.
Publicado: (2021) -
Consensual Regression of Soluble Solids Content in Peach by Near Infrared Spectrocopy
por: Yuan, Lei-Ming, et al.
Publicado: (2022) -
Cross-Category Tea Polyphenols Evaluation Model Based on Feature Fusion of Electronic Nose and Hyperspectral Imagery
por: Yang, Baohua, et al.
Publicado: (2019)