Cargando…

Frequent birth-and-death events throughout perforin-1 evolution

BACKGROUND: Through its ability to open pores in cell membranes, perforin-1 plays a key role in the immune system. Consistent with this role, the gene encoding perforin shows hallmarks of complex evolutionary events, including amplification and pseudogenization, in multiple species. A large proporti...

Descripción completa

Detalles Bibliográficos
Autores principales: Araujo-Voces, Miguel, Quesada, Víctor
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7574235/
https://www.ncbi.nlm.nih.gov/pubmed/33076840
http://dx.doi.org/10.1186/s12862-020-01698-1
Descripción
Sumario:BACKGROUND: Through its ability to open pores in cell membranes, perforin-1 plays a key role in the immune system. Consistent with this role, the gene encoding perforin shows hallmarks of complex evolutionary events, including amplification and pseudogenization, in multiple species. A large proportion of these events occurred in phyla for which scarce genomic data were available. However, recent large-scale genomics projects have added a wealth of information on those phyla. Using this input, we annotated perforin-1 homologs in more than eighty species including mammals, reptiles, birds, amphibians and fishes. RESULTS: We have annotated more than 400 perforin genes in all groups studied. Most mammalian species only have one perforin locus, which may contain a related pseudogene. However, we found four independent small expansions in unrelated members of this class. We could reconstruct the full-length coding sequences of only a few avian perforin genes, although we found incomplete and truncated forms of these gene in other birds. In the rest of reptilia, perforin-like genes can be found in at least three different loci containing up to twelve copies. Notably, mammals, non-avian reptiles, amphibians, and possibly teleosts share at least one perforin-1 locus as assessed by flanking genes. Finally, fish genomes contain multiple perforin loci with varying copy numbers and diverse exon/intron patterns. We have also found evidence for shorter genes with high similarity to the C2 domain of perforin in several teleosts. A preliminary analysis suggests that these genes arose at least twice during evolution from perforin-1 homologs. CONCLUSIONS: The assisted annotation of new genomic assemblies shows complex patterns of birth-and-death events in the evolution of perforin. These events include duplication/pseudogenization in mammals, multiple amplifications and losses in reptiles and fishes and at least one case of partial duplication with a novel start codon in fishes.