Cargando…
CMTR1-Catalyzed 2′-O-Ribose Methylation Controls Neuronal Development by Regulating Camk2α Expression Independent of RIG-I Signaling
Eukaryotic mRNAs are 5′ end capped with a 7-methylguanosine, which is important for processing and translation of mRNAs. Cap methyltransferase 1 (CMTR1) catalyzes 2′-O-ribose methylation of the first transcribed nucleotide (N1 2′-O-Me) to mask mRNAs from innate immune surveillance by retinoic-acid-i...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Author(s).
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7574844/ https://www.ncbi.nlm.nih.gov/pubmed/33086056 http://dx.doi.org/10.1016/j.celrep.2020.108269 |
Sumario: | Eukaryotic mRNAs are 5′ end capped with a 7-methylguanosine, which is important for processing and translation of mRNAs. Cap methyltransferase 1 (CMTR1) catalyzes 2′-O-ribose methylation of the first transcribed nucleotide (N1 2′-O-Me) to mask mRNAs from innate immune surveillance by retinoic-acid-inducible gene-I (RIG-I). Nevertheless, whether this modification regulates gene expression for neuronal functions remains unexplored. Here, we find that knockdown of CMTR1 impairs dendrite development independent of secretory cytokines and RIG-I signaling. Using transcriptomic analyses, we identify altered gene expression related to dendrite morphogenesis instead of RIG-I-activated interferon signaling, such as decreased calcium/calmodulin-dependent protein kinase 2α (Camk2α). In line with these molecular changes, dendritic complexity in CMTR1-insufficient neurons is rescued by ectopic expression of CaMK2α but not by inactivation of RIG-I signaling. We further generate brain-specific CMTR1-knockout mice to validate these findings in vivo. Our study reveals the indispensable role of CMTR1-catalyzed N1 2′-O-Me in gene regulation for brain development. |
---|