Cargando…
Interleukin‐4‐loaded hydrogel scaffold regulates macrophages polarization to promote bone mesenchymal stem cells osteogenic differentiation via TGF‐β1/Smad pathway for repair of bone defect
OBJECTIVE: Tissue engineering is a promising strategy for repair of large bone defect. However, the immune system reactions to biological scaffold are increasingly being recognized as a crucial factor influencing regeneration efficacy. In this study, a bone‐bioactive hydrogel bead loaded with interl...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7574882/ https://www.ncbi.nlm.nih.gov/pubmed/32951298 http://dx.doi.org/10.1111/cpr.12907 |
Sumario: | OBJECTIVE: Tissue engineering is a promising strategy for repair of large bone defect. However, the immune system reactions to biological scaffold are increasingly being recognized as a crucial factor influencing regeneration efficacy. In this study, a bone‐bioactive hydrogel bead loaded with interleukin‐4 (IL‐4) was used to regulate macrophages polarization and accelerate bone regeneration. METHODS: IL‐4‐loaded calcium‐enriched gellan gum (Ca‐GG + IL‐4) hydrogel beads were synthesised. And the effect on cell behaviour was detected. Furthermore, the effect of the Ca‐GG + IL‐4 hydrogel bead on macrophage polarization and the effect of macrophage polarization on bone mesenchymal stem cells (BMSCs) apoptosis and osteogenic differentiation were evaluated in vitro and in vivo. RESULTS: BMSCs were able to survive in the hydrogel regardless of whether IL‐4 was incorporated. Immunofluorescence staining and qPCR results revealed that Ca‐GG + IL‐4 hydrogel bead could promote M2 macrophage polarization and increase transforming growth factor (TGF)‐β1 expression level, which activates the TGF‐β1/Smad signalling pathway in BMSCs and promotes osteogenic differentiation. Moreover, immunohistochemical analysis demonstrated Ca‐GG + IL‐4 hydrogel bead could promote M2 macrophage polarization and reduce cell apoptosis in vivo. In addition, micro‐CT and immunohistochemical analysis at 12 weeks post‐surgery showed that Ca‐GG + IL‐4 hydrogel bead could achieve superior bone defect repair efficacy in vivo. CONCLUSIONS: The Ca‐GG + IL‐4 hydrogel bead effectively promoted bone defect regeneration via regulating macrophage polarization, reducing cell apoptosis and promoting BMSCs osteogenesis through TGF‐β1/Smad pathway. Therefore, it is a promising strategy for repair of bone defect. |
---|