Cargando…

Newly established gastrointestinal cancer cell lines retain the genomic and immunophenotypic landscape of their parental cancers

Human cancer cell lines are frequently used as model systems to study molecular mechanisms and genetic changes in cancer. However, the model is repeatedly criticized for its lack of proximity to original patient tumors. Therefore, understanding to what extent cell lines cultured under artificial con...

Descripción completa

Detalles Bibliográficos
Autores principales: Hirsch, Daniela, Seyfried, Steffen, Staib, Tobias, Fiedler, David, Sauer, Christian, Ried, Thomas, Witt, Stephanie, Rueckert, Felix, Gaiser, Timo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7578805/
https://www.ncbi.nlm.nih.gov/pubmed/33087752
http://dx.doi.org/10.1038/s41598-020-74797-0
Descripción
Sumario:Human cancer cell lines are frequently used as model systems to study molecular mechanisms and genetic changes in cancer. However, the model is repeatedly criticized for its lack of proximity to original patient tumors. Therefore, understanding to what extent cell lines cultured under artificial conditions reflect the phenotypic and genomic profiles of their corresponding parental tumors is crucial when analyzing their biological properties. To directly compare molecular alterations between patient tumors and derived cell lines, we have established new cancer cell lines from four patients with gastrointestinal tumors. Tumor entities comprised esophageal cancer, colon cancer, rectal cancer and pancreatic cancer. Phenotype and genotype of both patient tumors and derived low-passage cell lines were characterized by immunohistochemistry (22 different antibodies), array-based comparative genomic hybridization and targeted next generation sequencing (48-gene panel). The immunophenotype was highly consistent between patient tumors and derived cell lines; the expression of most markers in cell lines was concordant with the respective parental tumor and characteristic for the respective tumor entities in general. The chromosomal aberration patterns of the parental tumors were largely maintained in the cell lines and the distribution of gains and losses was typical for the respective cancer entity, despite a few distinct differences. Cancer gene mutations (e.g., KRAS, TP53) and microsatellite status were also preserved in the respective cell line derivates. In conclusion, the four examined newly established cell lines exhibited a phenotype and genotype closely recapitulating their parental tumor. Hence, newly established cancer cell lines may be useful models for further pharmacogenomic studies.