Cargando…

The Initial Gut Microbiota and Response to Antibiotic Perturbation Influence Clostridioides difficile Clearance in Mice

The gut microbiota has a key role in determining susceptibility to Clostridioides difficile infections (CDIs). However, much of the mechanistic work examining CDIs in mouse models uses animals obtained from a single source. We treated mice from 6 sources (2 University of Michigan colonies and 4 comm...

Descripción completa

Detalles Bibliográficos
Autores principales: Tomkovich, Sarah, Stough, Joshua M. A., Bishop, Lucas, Schloss, Patrick D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7580958/
https://www.ncbi.nlm.nih.gov/pubmed/33087520
http://dx.doi.org/10.1128/mSphere.00869-20
_version_ 1783598877751902208
author Tomkovich, Sarah
Stough, Joshua M. A.
Bishop, Lucas
Schloss, Patrick D.
author_facet Tomkovich, Sarah
Stough, Joshua M. A.
Bishop, Lucas
Schloss, Patrick D.
author_sort Tomkovich, Sarah
collection PubMed
description The gut microbiota has a key role in determining susceptibility to Clostridioides difficile infections (CDIs). However, much of the mechanistic work examining CDIs in mouse models uses animals obtained from a single source. We treated mice from 6 sources (2 University of Michigan colonies and 4 commercial vendors) with clindamycin, followed by a C. difficile challenge, and then measured C. difficile colonization levels throughout the infection. The microbiota were profiled via 16S rRNA gene sequencing to examine the variation across sources and alterations due to clindamycin treatment and C. difficile challenge. While all mice were colonized 1 day postinfection, variation emerged from days 3 to 7 postinfection with animals from some sources colonized with C. difficile for longer and at higher levels. We identified bacteria that varied in relative abundance across sources and throughout the experiment. Some bacteria were consistently impacted by clindamycin treatment in all sources of mice, including Lachnospiraceae, Ruminococcaceae, and Enterobacteriaceae. To identify bacteria that were most important to colonization regardless of the source, we created logistic regression models that successfully classified mice based on whether they cleared C. difficile by 7 days postinfection using community composition data at baseline, post-clindamycin treatment, and 1 day postinfection. With these models, we identified 4 bacterial taxa that were predictive of whether C. difficile cleared. They varied across sources (Bacteroides) or were altered by clindamycin (Porphyromonadaceae) or both (Enterobacteriaceae and Enterococcus). Allowing for microbiota variation across sources better emulates human interindividual variation and can help identify bacterial drivers of phenotypic variation in the context of CDIs. IMPORTANCE Clostridioides difficile is a leading nosocomial infection. Although perturbation to the gut microbiota is an established risk, there is variation in who becomes asymptomatically colonized, develops an infection, or has adverse infection outcomes. Mouse models of C. difficile infection (CDI) are widely used to answer a variety of C. difficile pathogenesis questions. However, the interindividual variation between mice from the same breeding facility is less than what is observed in humans. Therefore, we challenged mice from 6 different breeding colonies with C. difficile. We found that the starting microbial community structures and C. difficile persistence varied by the source of mice. Interestingly, a subset of the bacteria that varied across sources were associated with how long C. difficile was able to colonize. By increasing the interindividual diversity of the starting communities, we were able to better model human diversity. This provided a more nuanced perspective of C. difficile pathogenesis.
format Online
Article
Text
id pubmed-7580958
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher American Society for Microbiology
record_format MEDLINE/PubMed
spelling pubmed-75809582020-10-27 The Initial Gut Microbiota and Response to Antibiotic Perturbation Influence Clostridioides difficile Clearance in Mice Tomkovich, Sarah Stough, Joshua M. A. Bishop, Lucas Schloss, Patrick D. mSphere Research Article The gut microbiota has a key role in determining susceptibility to Clostridioides difficile infections (CDIs). However, much of the mechanistic work examining CDIs in mouse models uses animals obtained from a single source. We treated mice from 6 sources (2 University of Michigan colonies and 4 commercial vendors) with clindamycin, followed by a C. difficile challenge, and then measured C. difficile colonization levels throughout the infection. The microbiota were profiled via 16S rRNA gene sequencing to examine the variation across sources and alterations due to clindamycin treatment and C. difficile challenge. While all mice were colonized 1 day postinfection, variation emerged from days 3 to 7 postinfection with animals from some sources colonized with C. difficile for longer and at higher levels. We identified bacteria that varied in relative abundance across sources and throughout the experiment. Some bacteria were consistently impacted by clindamycin treatment in all sources of mice, including Lachnospiraceae, Ruminococcaceae, and Enterobacteriaceae. To identify bacteria that were most important to colonization regardless of the source, we created logistic regression models that successfully classified mice based on whether they cleared C. difficile by 7 days postinfection using community composition data at baseline, post-clindamycin treatment, and 1 day postinfection. With these models, we identified 4 bacterial taxa that were predictive of whether C. difficile cleared. They varied across sources (Bacteroides) or were altered by clindamycin (Porphyromonadaceae) or both (Enterobacteriaceae and Enterococcus). Allowing for microbiota variation across sources better emulates human interindividual variation and can help identify bacterial drivers of phenotypic variation in the context of CDIs. IMPORTANCE Clostridioides difficile is a leading nosocomial infection. Although perturbation to the gut microbiota is an established risk, there is variation in who becomes asymptomatically colonized, develops an infection, or has adverse infection outcomes. Mouse models of C. difficile infection (CDI) are widely used to answer a variety of C. difficile pathogenesis questions. However, the interindividual variation between mice from the same breeding facility is less than what is observed in humans. Therefore, we challenged mice from 6 different breeding colonies with C. difficile. We found that the starting microbial community structures and C. difficile persistence varied by the source of mice. Interestingly, a subset of the bacteria that varied across sources were associated with how long C. difficile was able to colonize. By increasing the interindividual diversity of the starting communities, we were able to better model human diversity. This provided a more nuanced perspective of C. difficile pathogenesis. American Society for Microbiology 2020-10-21 /pmc/articles/PMC7580958/ /pubmed/33087520 http://dx.doi.org/10.1128/mSphere.00869-20 Text en Copyright © 2020 Tomkovich et al. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Research Article
Tomkovich, Sarah
Stough, Joshua M. A.
Bishop, Lucas
Schloss, Patrick D.
The Initial Gut Microbiota and Response to Antibiotic Perturbation Influence Clostridioides difficile Clearance in Mice
title The Initial Gut Microbiota and Response to Antibiotic Perturbation Influence Clostridioides difficile Clearance in Mice
title_full The Initial Gut Microbiota and Response to Antibiotic Perturbation Influence Clostridioides difficile Clearance in Mice
title_fullStr The Initial Gut Microbiota and Response to Antibiotic Perturbation Influence Clostridioides difficile Clearance in Mice
title_full_unstemmed The Initial Gut Microbiota and Response to Antibiotic Perturbation Influence Clostridioides difficile Clearance in Mice
title_short The Initial Gut Microbiota and Response to Antibiotic Perturbation Influence Clostridioides difficile Clearance in Mice
title_sort initial gut microbiota and response to antibiotic perturbation influence clostridioides difficile clearance in mice
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7580958/
https://www.ncbi.nlm.nih.gov/pubmed/33087520
http://dx.doi.org/10.1128/mSphere.00869-20
work_keys_str_mv AT tomkovichsarah theinitialgutmicrobiotaandresponsetoantibioticperturbationinfluenceclostridioidesdifficileclearanceinmice
AT stoughjoshuama theinitialgutmicrobiotaandresponsetoantibioticperturbationinfluenceclostridioidesdifficileclearanceinmice
AT bishoplucas theinitialgutmicrobiotaandresponsetoantibioticperturbationinfluenceclostridioidesdifficileclearanceinmice
AT schlosspatrickd theinitialgutmicrobiotaandresponsetoantibioticperturbationinfluenceclostridioidesdifficileclearanceinmice
AT tomkovichsarah initialgutmicrobiotaandresponsetoantibioticperturbationinfluenceclostridioidesdifficileclearanceinmice
AT stoughjoshuama initialgutmicrobiotaandresponsetoantibioticperturbationinfluenceclostridioidesdifficileclearanceinmice
AT bishoplucas initialgutmicrobiotaandresponsetoantibioticperturbationinfluenceclostridioidesdifficileclearanceinmice
AT schlosspatrickd initialgutmicrobiotaandresponsetoantibioticperturbationinfluenceclostridioidesdifficileclearanceinmice