Cargando…
The Initial Gut Microbiota and Response to Antibiotic Perturbation Influence Clostridioides difficile Clearance in Mice
The gut microbiota has a key role in determining susceptibility to Clostridioides difficile infections (CDIs). However, much of the mechanistic work examining CDIs in mouse models uses animals obtained from a single source. We treated mice from 6 sources (2 University of Michigan colonies and 4 comm...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7580958/ https://www.ncbi.nlm.nih.gov/pubmed/33087520 http://dx.doi.org/10.1128/mSphere.00869-20 |
_version_ | 1783598877751902208 |
---|---|
author | Tomkovich, Sarah Stough, Joshua M. A. Bishop, Lucas Schloss, Patrick D. |
author_facet | Tomkovich, Sarah Stough, Joshua M. A. Bishop, Lucas Schloss, Patrick D. |
author_sort | Tomkovich, Sarah |
collection | PubMed |
description | The gut microbiota has a key role in determining susceptibility to Clostridioides difficile infections (CDIs). However, much of the mechanistic work examining CDIs in mouse models uses animals obtained from a single source. We treated mice from 6 sources (2 University of Michigan colonies and 4 commercial vendors) with clindamycin, followed by a C. difficile challenge, and then measured C. difficile colonization levels throughout the infection. The microbiota were profiled via 16S rRNA gene sequencing to examine the variation across sources and alterations due to clindamycin treatment and C. difficile challenge. While all mice were colonized 1 day postinfection, variation emerged from days 3 to 7 postinfection with animals from some sources colonized with C. difficile for longer and at higher levels. We identified bacteria that varied in relative abundance across sources and throughout the experiment. Some bacteria were consistently impacted by clindamycin treatment in all sources of mice, including Lachnospiraceae, Ruminococcaceae, and Enterobacteriaceae. To identify bacteria that were most important to colonization regardless of the source, we created logistic regression models that successfully classified mice based on whether they cleared C. difficile by 7 days postinfection using community composition data at baseline, post-clindamycin treatment, and 1 day postinfection. With these models, we identified 4 bacterial taxa that were predictive of whether C. difficile cleared. They varied across sources (Bacteroides) or were altered by clindamycin (Porphyromonadaceae) or both (Enterobacteriaceae and Enterococcus). Allowing for microbiota variation across sources better emulates human interindividual variation and can help identify bacterial drivers of phenotypic variation in the context of CDIs. IMPORTANCE Clostridioides difficile is a leading nosocomial infection. Although perturbation to the gut microbiota is an established risk, there is variation in who becomes asymptomatically colonized, develops an infection, or has adverse infection outcomes. Mouse models of C. difficile infection (CDI) are widely used to answer a variety of C. difficile pathogenesis questions. However, the interindividual variation between mice from the same breeding facility is less than what is observed in humans. Therefore, we challenged mice from 6 different breeding colonies with C. difficile. We found that the starting microbial community structures and C. difficile persistence varied by the source of mice. Interestingly, a subset of the bacteria that varied across sources were associated with how long C. difficile was able to colonize. By increasing the interindividual diversity of the starting communities, we were able to better model human diversity. This provided a more nuanced perspective of C. difficile pathogenesis. |
format | Online Article Text |
id | pubmed-7580958 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American Society for Microbiology |
record_format | MEDLINE/PubMed |
spelling | pubmed-75809582020-10-27 The Initial Gut Microbiota and Response to Antibiotic Perturbation Influence Clostridioides difficile Clearance in Mice Tomkovich, Sarah Stough, Joshua M. A. Bishop, Lucas Schloss, Patrick D. mSphere Research Article The gut microbiota has a key role in determining susceptibility to Clostridioides difficile infections (CDIs). However, much of the mechanistic work examining CDIs in mouse models uses animals obtained from a single source. We treated mice from 6 sources (2 University of Michigan colonies and 4 commercial vendors) with clindamycin, followed by a C. difficile challenge, and then measured C. difficile colonization levels throughout the infection. The microbiota were profiled via 16S rRNA gene sequencing to examine the variation across sources and alterations due to clindamycin treatment and C. difficile challenge. While all mice were colonized 1 day postinfection, variation emerged from days 3 to 7 postinfection with animals from some sources colonized with C. difficile for longer and at higher levels. We identified bacteria that varied in relative abundance across sources and throughout the experiment. Some bacteria were consistently impacted by clindamycin treatment in all sources of mice, including Lachnospiraceae, Ruminococcaceae, and Enterobacteriaceae. To identify bacteria that were most important to colonization regardless of the source, we created logistic regression models that successfully classified mice based on whether they cleared C. difficile by 7 days postinfection using community composition data at baseline, post-clindamycin treatment, and 1 day postinfection. With these models, we identified 4 bacterial taxa that were predictive of whether C. difficile cleared. They varied across sources (Bacteroides) or were altered by clindamycin (Porphyromonadaceae) or both (Enterobacteriaceae and Enterococcus). Allowing for microbiota variation across sources better emulates human interindividual variation and can help identify bacterial drivers of phenotypic variation in the context of CDIs. IMPORTANCE Clostridioides difficile is a leading nosocomial infection. Although perturbation to the gut microbiota is an established risk, there is variation in who becomes asymptomatically colonized, develops an infection, or has adverse infection outcomes. Mouse models of C. difficile infection (CDI) are widely used to answer a variety of C. difficile pathogenesis questions. However, the interindividual variation between mice from the same breeding facility is less than what is observed in humans. Therefore, we challenged mice from 6 different breeding colonies with C. difficile. We found that the starting microbial community structures and C. difficile persistence varied by the source of mice. Interestingly, a subset of the bacteria that varied across sources were associated with how long C. difficile was able to colonize. By increasing the interindividual diversity of the starting communities, we were able to better model human diversity. This provided a more nuanced perspective of C. difficile pathogenesis. American Society for Microbiology 2020-10-21 /pmc/articles/PMC7580958/ /pubmed/33087520 http://dx.doi.org/10.1128/mSphere.00869-20 Text en Copyright © 2020 Tomkovich et al. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Research Article Tomkovich, Sarah Stough, Joshua M. A. Bishop, Lucas Schloss, Patrick D. The Initial Gut Microbiota and Response to Antibiotic Perturbation Influence Clostridioides difficile Clearance in Mice |
title | The Initial Gut Microbiota and Response to Antibiotic Perturbation Influence Clostridioides difficile Clearance in Mice |
title_full | The Initial Gut Microbiota and Response to Antibiotic Perturbation Influence Clostridioides difficile Clearance in Mice |
title_fullStr | The Initial Gut Microbiota and Response to Antibiotic Perturbation Influence Clostridioides difficile Clearance in Mice |
title_full_unstemmed | The Initial Gut Microbiota and Response to Antibiotic Perturbation Influence Clostridioides difficile Clearance in Mice |
title_short | The Initial Gut Microbiota and Response to Antibiotic Perturbation Influence Clostridioides difficile Clearance in Mice |
title_sort | initial gut microbiota and response to antibiotic perturbation influence clostridioides difficile clearance in mice |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7580958/ https://www.ncbi.nlm.nih.gov/pubmed/33087520 http://dx.doi.org/10.1128/mSphere.00869-20 |
work_keys_str_mv | AT tomkovichsarah theinitialgutmicrobiotaandresponsetoantibioticperturbationinfluenceclostridioidesdifficileclearanceinmice AT stoughjoshuama theinitialgutmicrobiotaandresponsetoantibioticperturbationinfluenceclostridioidesdifficileclearanceinmice AT bishoplucas theinitialgutmicrobiotaandresponsetoantibioticperturbationinfluenceclostridioidesdifficileclearanceinmice AT schlosspatrickd theinitialgutmicrobiotaandresponsetoantibioticperturbationinfluenceclostridioidesdifficileclearanceinmice AT tomkovichsarah initialgutmicrobiotaandresponsetoantibioticperturbationinfluenceclostridioidesdifficileclearanceinmice AT stoughjoshuama initialgutmicrobiotaandresponsetoantibioticperturbationinfluenceclostridioidesdifficileclearanceinmice AT bishoplucas initialgutmicrobiotaandresponsetoantibioticperturbationinfluenceclostridioidesdifficileclearanceinmice AT schlosspatrickd initialgutmicrobiotaandresponsetoantibioticperturbationinfluenceclostridioidesdifficileclearanceinmice |