Cargando…
A Recurrent Deep Network for Estimating the Pose of Real Indoor Images from Synthetic Image Sequences
Recently, deep convolutional neural networks (CNN) have become popular for indoor visual localisation, where the networks learn to regress the camera pose from images directly. However, these approaches perform a 3D image-based reconstruction of the indoor spaces beforehand to determine camera poses...
Autores principales: | Acharya, Debaditya, Singha Roy, Sesa, Khoshelham, Kourosh, Winter, Stephan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7582800/ https://www.ncbi.nlm.nih.gov/pubmed/32992742 http://dx.doi.org/10.3390/s20195492 |
Ejemplares similares
-
Sensors for Indoor Mapping and Navigation
por: Khoshelham, Kourosh, et al.
Publicado: (2016) -
Accuracy and Resolution of Kinect Depth Data for Indoor Mapping Applications
por: Khoshelham, Kourosh, et al.
Publicado: (2012) -
Automatic Real-Time Pose Estimation of Machinery from Images
por: Bertels, Marcel, et al.
Publicado: (2022) -
3D Modeling of Building Indoor Spaces and Closed Doors from Imagery and Point Clouds
por: Díaz-Vilariño, Lucía, et al.
Publicado: (2015) -
WormPose: Image synthesis and convolutional networks for pose estimation in C. elegans
por: Hebert, Laetitia, et al.
Publicado: (2021)